3 research outputs found

    Micelle-mediated method for simultaneous determination of ascorbic acid and uric acid by differential pulse voltammetry

    Full text link
    The present work describes an analytical methodology for simultaneous determination of ascorbic acid (AA) and uric acid (UA) by differential pulse voltammetry employing the cationic surfactant, cetylpyridinium chloride. Differential pulse voltammetry measurements revealed that the cationic micellar media may separate the oxidation peak potentials of AA and UA present in the same solution by about 282 mV, which is enough to determine both species simultaneously. As in pH 7.0 the AA is more ionized than UA, its electrostatic attraction towards the cationic micelles formed onto the surface of glassy carbon electrode is higher, therefore, promoting a decrease in the overpotential and increasing the electron transfer rate. Calibration curves to AA and UA in the concentration range from 4.70 up to 220 µmol L-1 and 0.50 up to 110 µmol L-1 were built. The proposed methodology was applied for the simultaneous determination of AA and UA in human urine samples

    Electrocatalytic oxidation of hydrazine in alkaline media promoted by iron tetrapyridinoporphyrazine adsorbed on graphite surface

    Full text link
    The electrocatalytic oxidation of hydrazine was studied using an ordinary pyrolytic graphite electrode modified with iron tetrapyridinoporphyrazine complex (FeTPyPz), employing cyclic voltammetry and rotating disk electrode techniques. Analyses of the voltammograms recorded at different potential scan rates and the polarization curves at different electrode rotation rates showed that the reaction of electrooxidation of hydrazine on FeTPyPz occurs via 4-electrons with the formation of N2 as main product. The kinetic parameters suggest that the second electron transfer step is rate controlling. The activity of FeTPyPz depends on its Fe(II)/Fe(I) formal potential and fits well in a volcano plot that includes several iron phthalocyanines, indicating that such formal potential is a good reactivity index for these complexes
    corecore