6 research outputs found

    Non-Debye impedance and relaxation models for dissipative electrochemical capacitors

    Full text link
    Electrochemical capacitors are a class of energy devices in which complex mechanisms of accumulation and dissipation of electric energy take place when connected to a charging or discharging power system. Reliably modeling their frequency-domain and time-domain behaviors is crucial for their proper design and integration in engineering applications, knowing that electrochemical capacitors in general exhibit anomalous tendency that cannot be adequately captured with traditional integer-order-based models. In this study we first review some of the widely used fractional-oder models for the description of impedance and relaxation functions of dissipative resistive-capacitive system, namely the Cole-Cole, Davidson-Cole, and Havriliak-Negami models. We then propose and derive new q-deformed models based on modified evolution equations for the charge or voltage when the device is discharged into a parallel resistive load. We verify our results on anomalous spectral impedance response and time-domain relaxation data for voltage and charge obtained from a commercial supercapacitor.Comment: 9 pages, 3 figure

    Control and estimation techniques applied to smart microgrids : a review

    Get PDF
    DATA AVAILABILITY : No data was used for the research described in the article.The performance of microgrid operation requires hierarchical control and estimation schemes that coordinate and monitor the system dynamics within the expected manipulated and control variables. Smart grid technologies possess innovative tools and frameworks to model the dynamic behaviour of microgrids regardless of their types, structures, etc. Various control and estimation technologies are reviewed for developing dynamic models of smart microgrids. The hierarchical system of a microgrid control consists of three architectural layers, primary, secondary and tertiary, which need to be supported by real-time monitoring and measurement environment of the system variables and parameters. Various control and estimation schemes have been devised to handle the dynamic performance of microgrids in the function of control layers requirement. Firstly, control schemes in the innovative grid environment are evaluated to understand the dynamics of the developed technologies. Six control technologies, linear, non-linear, robust, predictive, intelligent and adaptive, are mainly used to model the control design within the layer(s) regardless of the types of microgrids. Secondly, the estimation technologies are evaluated based on the state of variables, locations and modelling of microgrids that can efficiently support the performance of the controllers and operating microgrids. Finally, a future vision for designing hierarchical and architectural control techniques for the optimal operation of intelligent microgrids is also provided. Therefore, this study will serve as a fundamental conceptual framework to select a perfect optimal design modelling strategy and policy-making decisions to control, monitor and protect the innovative electrical network.http://www.elsevier.com/locate/rserhj2023Electrical, Electronic and Computer Engineerin

    Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey

    Get PDF
    Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10 years; 78.2% included were male with a median age of 37 years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020

    Formulation of the Alpha Sliding Innovation Filter: A Robust Linear Estimation Strategy

    No full text
    In this paper, a new filter referred to as the alpha sliding innovation filter (ASIF) is presented. The sliding innovation filter (SIF) is a newly developed estimation strategy that uses innovation or measurement error as a switching hyperplane. It is a sub-optimal filter that provides a robust and stable estimate. In this paper, the SIF is reformulated by including a forgetting factor, which significantly improves estimation performance. The proposed ASIF is applied to several systems including a first-order thermometer, a second-order spring-mass-damper, and a third-order electrohydrostatic actuator (EHA) that was built for experimentation. The proposed ASIF provides an improvement in estimation accuracy while maintaining robustness to modeling uncertainties and disturbances

    Reinforced Lattice Kalman Filters: A Robust Nonlinear Estimation Strategy

    No full text
    This article introduces the Sliding Innovation Lattice Filter (SILF), a robust extension of the Lattice Kalman Filter (LKF) that leverages sliding mode theory. SILF incorporates a sliding boundary layer in the measurement update formulation, enabling the filter innovation to slide within predefined upper and lower bounds. This enhances the robustness of SILF, making it resilient to model uncertainties and noise. Additionally, a derivative-free formulation of SILF is developed using statistical linear regression, eliminating the need for Jacobian calculations. To further improve accuracy, robustness, and convergence behavior in the presence of abrupt changes in system model/parameters, SILF is reinforced with the Iterated Sigma Point Filtering and Strong Tracking Filtering strategies, resulting in the Reinforced Lattice Kalman Filter (RLKF). The experimental findings for the estimation of distorted power waveforms illustrate the superior performance of SILF and RLKF over competing methods, especially when operating in scenarios characterized by model uncertainties and noisy environments

    Energy and cost analysis of processing flat plate solar collectors

    No full text
    In this work, a life cycle analysis is accomplished for flat plate solar collectors. The purpose of this investigation is to predict the energy consumption during the manufacturing processes that results in carbon dioxide emissions. Energy consumption and system efficiency enhancement will be studied and predicted. CES EduPack software is used to perform the analysis of the currently commercial system, and the suggested changes are implemented to increase the efficiency and make the comparison. Even though cost analysis is done, the priority of selection is given to the most energy conserving and environmentally friendly alternative. However, if the compared alternatives result in the same energy consumption and CO2 emissions, the cost analysis would be a better approach. It can be stated that flat plate solar collectors are sustainable and renewable energy systems that do not produce CO2 emissions during their active usage, but the manufacturing processes they undergo during the design contribute to the greenhouse gasses emission.Peer reviewe
    corecore