6 research outputs found

    Role of synthetic plant extracts on the production of silver-derived nanoparticles

    Get PDF
    The main antioxidants present in plant extracts—quercetin, β-carotene, gallic acid, ascorbic acid, hydroxybenzoic acid, caffeic acid, catechin and scopoletin—are able to synthesize silver nanoparticles when reacting with a Ag NO3 solution. The UV-visible absorption spectrum recorded with most of the antioxidants shows the characteristic surface plasmon resonance band of silver nanoparticles. Nanoparticles synthesised with ascorbic, hydroxybenzoic, caffeic, and gallic acids and scopoletin are spherical. Nanoparticles synthesised with quercetin are grouped together to form micellar structures. Nanoparticles synthesised by β-carotene, were triangular and polyhedral forms with truncated corners. Pentagonal nanoparticles were synthesized with catechin. We used Fourier-transform infrared spectroscopy to check that the biomolecules coat the synthesised silver nanoparticles. X-ray powder diffractograms showed the presence of silver, AgO, Ag2O, Ag3O4 and Ag2O3 . Rod-like structures were obtained with quercetin and gallic acid and cookie-like structures in the nanoparticles obtained with scopoletin, as a consequence of their reactivity with cyanide. This analysis explained the role played by the various agents responsible for the bio-reduction triggered by nanoparticle synthesis in their shape, size and activity. This will facilitate targeted synthesis and the application of biotechnological techniques to optimise the green synthesis of nanoparticles

    Transcriptional analysis of Rhazya stricta in response to jasmonic acid

    Get PDF
    Background: Jasmonic acid (JA) is a signal transducer molecule that plays an important role in plant development and stress response; it can also efficiently stimulate secondary metabolism in plant cells. Results: RNA-Seq technology was applied to identify differentially expressed genes and study the time course of gene expression in Rhazya stricta in response to JA. Of more than 288 million total reads, approximately 27% were mapped to genes in the reference genome. Genes involved during the secondary metabolite pathways were up- or downregulated when treated with JA in R. stricta. Functional annotation and pathway analysis of all up- and downregulated genes identified many biological processes and molecular functions. Jasmonic acid biosynthetic, cell wall organization, and chlorophyll metabolic processes were upregulated at days 2, 6, and 12, respectively. Similarly, the molecular functions of calcium-transporting ATPase activity, ADP binding, and protein kinase activity were also upregulated at days 2, 6, and 12, respectively. Time-dependent transcriptional gene expression analysis showed that JA can induce signaling in the phenylpropanoid and aromatic acid pathways. These pathways are responsible for the production of secondary metabolites, which are essential for the development and environmental defense mechanism of R. stricta during stress conditions. Conclusions: Our results suggested that genes involved in flavonoid biosynthesis and aromatic acid synthesis pathways were upregulated during JA stress. However, monoterpenoid indole alkaloid (MIA) was unaffected by JA treatment. Hence, we can postulate that JA plays an important role in R. stricta during plant development and environmental stress conditions. How to cite: Hajrah, NH, Rabah SO, Alghamdi MK, et al. Transcriptional analysis of Rhazya stricta in response to jasmonic acid. Electron J Biotechnol 2021;50. https://doi.org/10.1016/j.ejbt.2021.01.00

    Spatiotemporal Clustering of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Incidence in Saudi Arabia, 2012–2019

    No full text
    Middle East respiratory syndrome coronavirus (MERS-CoV) is a great public health concern globally. Although 83% of the globally confirmed cases have emerged in Saudi Arabia, the spatiotemporal clustering of MERS-CoV incidence has not been investigated. This study analysed the spatiotemporal patterns and clusters of laboratory-confirmed MERS-CoV cases reported in Saudi Arabia between June 2012 and March 2019. Temporal, seasonal, spatial and spatiotemporal cluster analyses were performed using Kulldorff’s spatial scan statistics to determine the time period and geographical areas with the highest MERS-CoV infection risk. A strongly significant temporal cluster for MERS-CoV infection risk was identified between April 5 and May 24, 2014. Most MERS-CoV infections occurred during the spring season (41.88%), with April and May showing significant seasonal clusters. Wadi Addawasir showed a high-risk spatial cluster for MERS-CoV infection. The most likely high-risk MERS-CoV annual spatiotemporal clusters were identified for a group of cities (n = 10) in Riyadh province between 2014 and 2016. A monthly spatiotemporal cluster included Jeddah, Makkah and Taif cities, with the most likely high-risk MERS-CoV infection cluster occurring between April and May 2014. Significant spatiotemporal clusters of MERS-CoV incidence were identified in Saudi Arabia. The findings are relevant to control the spread of the disease. This study provides preliminary risk assessments for the further investigation of the environmental risk factors associated with MERS-CoV clusters

    Anticancer and Antimicrobial Activity of Silver Nanoparticles Synthesized from Pods of Acacia nilotica

    No full text
    Green synthesized silver nanoparticles (AgNPs) have been used against antibiotic-resistant bacteria and chemo-resistant cancer cells. We synthesized AgNPs from Acacia nilotica pods, evaluating their antibacterial activity against eight bacterial strains and anticancer efficiency against two colon cancer cell lines, SW620 and SW480. Expression levels of eight genes (β-catenin, APC, TP53, Beclin1, DKK3, Axin, Cyclin D1, and C-myc) were checked by a reverse transcription-polymerase chain reaction in cancer cells before and after treatment with A. nilotica extract and A. nilotica-AgNPs. Prepared nanoparticles were characterized through ultraviolet-visible (UV-vis), Zetasizer, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Fourier transform infrared spectroscopy (FTIR) was used to identify the functional group in extracts. At first, AgNPs were confirmed by a sharp peak of surface plasmon resonance at 375 nm. The Z-average size was 105.4 nm with a polydispersity index of 0.297. TEM showed particle size of 11–30 nm. The prepared AgNPs showed promising antibacterial activity against bacterial strains and cytotoxic activity against the cancer cell lines. Expression levels of all the genes were affected by extract and AgNPs treatment. Overall, this study recommended both A. nilotica pods and A. nilotica-AgNPs as attractive candidates for antibacterial and anticancer applications

    Anticancer and Antimicrobial Activity of Silver Nanoparticles Synthesized from Pods of <i>Acacia nilotica</i>

    No full text
    Green synthesized silver nanoparticles (AgNPs) have been used against antibiotic-resistant bacteria and chemo-resistant cancer cells. We synthesized AgNPs from Acacia nilotica pods, evaluating their antibacterial activity against eight bacterial strains and anticancer efficiency against two colon cancer cell lines, SW620 and SW480. Expression levels of eight genes (β-catenin, APC, TP53, Beclin1, DKK3, Axin, Cyclin D1, and C-myc) were checked by a reverse transcription-polymerase chain reaction in cancer cells before and after treatment with A. nilotica extract and A. nilotica-AgNPs. Prepared nanoparticles were characterized through ultraviolet-visible (UV-vis), Zetasizer, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Fourier transform infrared spectroscopy (FTIR) was used to identify the functional group in extracts. At first, AgNPs were confirmed by a sharp peak of surface plasmon resonance at 375 nm. The Z-average size was 105.4 nm with a polydispersity index of 0.297. TEM showed particle size of 11–30 nm. The prepared AgNPs showed promising antibacterial activity against bacterial strains and cytotoxic activity against the cancer cell lines. Expression levels of all the genes were affected by extract and AgNPs treatment. Overall, this study recommended both A. nilotica pods and A. nilotica-AgNPs as attractive candidates for antibacterial and anticancer applications
    corecore