2 research outputs found

    Gene Expression Profiling and Protein Analysis Reveal Suppression of the C-Myc Oncogene and Inhibition JAK/STAT and PI3K/AKT/mTOR Signaling by Thymoquinone in Acute Myeloid Leukemia Cells

    Get PDF
    Overexpression of c-Myc plays an essential role in leukemogenesis and drug resistance, making c-Myc an attractive target for cancer therapy. However, targeting c-Myc directly is impossible, and c-Myc upstream regulator pathways could be targeted instead. This study investigated the effects of thymoquinone (TQ), a bioactive constituent in Nigella sativa, on the activation of upstream regulators of c-Myc: the JAK/STAT and PI3K/AKT/mTOR pathways in HL60 leukemia cells. Nextgeneration sequencing (NGS) was performed for gene expression profiling after TQ treatment. The expression of c-Myc and genes involved in JAK/STAT and PI3K/AKT/mTOR were validated by quantitative reverse transcription PCR (RT-qPCR). In addition, Jess assay analysis was performed to determine TQ’s effects on JAK/STAT and PI3K/AKT signaling and c-Myc protein expression. The results showed 114 significant differentially expressed genes after TQ treatment (p < 0.002). DAVID analysis revealed that most of these genes’ effect was on apoptosis and proliferation. There was downregulation of c-Myc, PI3K, AKT, mTOR, JAK2, STAT3, STAT5a, and STAT5b. Protein analysis showed that TQ also inhibited JAK/STAT and PI3K/AKT signaling, resulting in inhibition of c-Myc protein expression. In conclusion, the findings suggest that TQ potentially inhibits proliferation and induces apoptosis in HL60 leukemia cells by downregulation of c-Myc expression through inhibition of the JAK/STAT and PI3K/AKT signaling pathways

    Effectiveness of Anodal otDCS Following with Anodal tDCS Rather than tDCS Alone for Increasing of Relative Power of Intrinsic Matched EEG Bands in Rat Brains

    No full text
    Background: This study sought to determine whether (1) evidence is available of interactions between anodal tDCS and oscillated tDCS stimulation patterns to increase the power of endogenous brain oscillations and (2) the frequency matching the applied anodal otDCS’s frequency and the brain’s dominant intrinsic frequency influence power shifting during stimulation pattern sessions by both anodal DCS and anodal oscillated DCS. Method: Rats received different anodal tDCS and otDCS stimulation patterns using 8.5 Hz and 13 Hz state-related dominant intrinsic frequencies of anodal otDCS. The rats were divided into groups with specific stimulation patterns: group A: tDCS–otDCS (8.5 Hz)–otDCS (13 Hz); group B: otDCS (8.5 Hz)–tDCS–otDCS (13 Hz); group C: otDCS (13 Hz)–tDCS–otDCS (8.5 Hz). Acute relative power changes (i.e., following 10 min stimulation sessions) in six frequency bands—delta (1.5–4 Hz), theta (4–7 Hz), alpha-1 (7–10 Hz), alpha-2 (10–12 Hz), beta-1 (12–15 Hz) and beta-2 (15–20 Hz)—were compared using three factors and repeated ANOVA measurement. Results: For each stimulation, tDCS increased theta power band and, above bands alpha and beta, a drop in delta power was observed. Anodal otDCS had a mild increasing power effect in both matched intrinsic and delta bands. In group pattern stimulations, increased power of endogenous frequencies matched exogenous otDCS frequencies—8.5 Hz or 13 Hz—with more potent effects in upper bands. The power was markedly more potent with the otDCS–tDCS stimulation pattern than the tDCS–otDCS pattern. Significance: The findings suggest that the otDCS–tDCS pattern stimulation increased the power in matched intrinsic oscillations and, significantly, in the above bands in an ascending order. We provide evidence for the successful corporation between otDCS (as frequency-matched guidance) and tDCS (as a power generator) rather than tDCS alone when stimulating a desired brain intrinsic band (herein, tES specificity)
    corecore