5 research outputs found

    Associative effects of activated carbon biochar and arbuscular mycorrhizal fungi on wheat for reducing nickel food chain bioavailability

    Get PDF
    Heavy metal stress and less nutrient availability are some of the major concerns in agriculture. Both abiotic stresses have potential to decrease the crops productivity. On the other hand, organic fertilizers i.e., activated carbon biochar (ACB) and arbuscular mycorrhizal fungi (AMF) increase nutritional and heavy metal like Nickel (Ni) stress tolerance and provide immunity to plants for their survival in unfavorable environments. Previous studies have only looked at single applications of either ACB or AMF thus far. There is limited evidence of their synergistic effects, especially in plants growing in soil contaminated with nickel (Ni). To cover the knowledge gap of combined use of AMF inoculation (Glomus intraradices) and/or wheat straw biochar amendments on wheat growth, antioxidant activities and osmolytes concentration, present study is conducted. The use of either the AMF inoculant or the ACB alone resulted in improved wheat growth and decreased Ni uptake. Furthermore, sole AMF or ACB also reduced Ni stress effectively, allowing wheat to grow faster and reducing soil Ni transfer into plant tissue. In comparison to a control, adding ACB with AMF inoculant considerably increased fungal populations. The most significant increase in wheat growth and decrease in tissue Ni contents came from amending soil with AMF inoculant and biochar. Inducing soil alkalinization and causing Ni immobilization, as well as decreasing Ni phyto-availability, the combination treatment had a synergistic impact. These findings imply that AMF inoculation in ACB treatment could be used not only for wheat production but also for Ni-contaminated soil phyto-stabilization. (C) 2022 The Author(s). Published by Elsevier B.V.Peer reviewe

    Integral effects of brassinosteroids and timber waste biochar enhances the drought tolerance capacity of wheat plant

    Get PDF
    Drought stress is among the major threats that affect negatively crop productivity in arid and semi-arid regions. Probably, application of some additives such as biochar and/or brassinosteroids could mitigate this stress; however, the mechanism beyond the interaction of these two applications is not well inspected. Accordingly, a greenhouse experiment was conducted on wheat (a strategic crop) grown under deficit irrigation levels (factor A) i.e., 35% of the water holding capacity (WHC) versus 75% of WHC for 35 days while considering the following additives, i.e., (1) biochar [BC, factor B, 0, 2%] and (2) the foliar application of 24-epibrassinolide [BR, factor C, 0 (control treatment, C), 1 (BR1) or 3 (BR2) mu mol)]. All treatments were replicated trice and the obtained results were statistically analyzed via the analyses of variance. Also, heat-map conceits between measured variables were calculated using the Python software. Key results indicate that drought stress led to significant reductions in all studied vegetative growth parameters (root and shoot biomasses) and photosynthetic pigments (chlorophyll a, b and total contents) while raised the levels of oxidative stress indicators. However, with the application of BC and/or BR, significance increases occurred in the growth attributes of wheat plants, its photosynthetic pigments, especially the combined additions. They also upraised the levels of enzymatic and non-enzymatic antioxidants while decreased stress indicators. Furthermore, they increased calcium (Ca), phosphorus (P) and potassium (K) content within plants. It can therefore be deduced that the integral application of BR and BC is essential to mitigate drought stress in plants.Peer reviewe

    Exogenously applied ZnO nanoparticles induced salt tolerance in potentially high yielding modern wheat (Triticum aestivum L.) cultivars

    Get PDF
    Salinity stress is one of the potential threats that adversely affect the productivity of many cereal crops worldwide. Spraying plants with nano-Zn particles may lessen effectively such negative impacts on plants; yet its mode of action is still not well explored. This study was performed to evaluate the effects of spraying nano-Zn particles with varying concentrations (0, 20, 50 and 80 mg L-1) on two wheat cultivars irrigated with saline water (EC = 6.3 dS m-1) versus a non-saline one. The key results revealed that root and shoot weights decreased significantly under salinity stress conditions, while improved considerably with nano-Zn-particles foliar application up to 50 mg nanoZn L-1; thereafter significant reductions occurred. Also, shoot and root lengths as well as plant leaf area index improved considerably owing to this foliar application. Clearly, roots and shoots weights of wheat plants sprayed with nano-Zn particles under salinity stress conditions exhibited higher values than the corresponding ones that was grown under non-saline conditions without nano-Zn-particles applications. Unexpectedly, this foliar spray led to significant reductions in plant pigments and also in enzymatic and non-enzymatic antioxidants in plants. Yet, this foliar spray enhanced formation of total soluble sugars and proline, and raised significantly Ca contents in wheat roots and shoots, and to some extent K contents. In conclusion, the foliar application of nano-Zn particles increased plant growth under salty stress conditions via two parallel processes, i.e., stimulating formation of osmolytes and stimulating nutrient uptake which may, in turn, increase plant metabolism. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CCPeer reviewe

    Improvement in Physiobiochemical and Yield Characteristics of Pea Plants with Nano Silica and Melatonin under Salinity Stress Conditions

    No full text
    The effect of nano silica (50 mL L−1) and melatonin (75 µM) individually or in combination in foliar applications on the morphophysiological, biochemical and yield properties of pea plants under salinity stress conditions was evaluated. Salt stress caused a remarkable decrease in the growth and yield characteristics; for example, the plant dry weight, plant height, number of flowers plant−1, number of pods plant−1, weight of 100 green seeds and protein concentration in the pea plants during both seasons were decreased compared with the control. Similarly, their physiobiochemical characteristics were negatively affected; chlorophyll a, chlorophyll b and the relative water content (RWC) were significantly reduced in the stressed pea plants. However, malondialdehyde (MDA), hydrogen peroxide, the electrolyte leakage (EL%), super oxide and the antioxidant components (catalase (CAT), superoxide dismutase (SOD), peroxidase (POX) and total phenolic compounds) were significantly increased when the plants were under salt stress compared with the control plants. On the other hand, the foliar application of nano silica and melatonin individually or in combination enhanced the physiobiochemical characteristics, morphological characteristics and yield of the stressed pea plants. The best treatment was the combination treatment (nano silica + melatonin), which caused significant increases in the plant dry weight, plant height, number of flowers and pods plant−1, weight of 100 green seeds, protein concentration, chlorophyll concentrations and RWC in the stressed pea plants. Additionally, the combination treatment significantly decreased the EL%, MDA, O2⋅− and H2O2 and adjusted the upregulation of the antioxidant enzymes, proline and total phenolic compounds in the stressed plants compared with the stressed untreated pea plants. Generally, it can be suggested that the co-application of nano silica (50 mL L−1) + melatonin (75 µM) plays a positive role in alleviating the adverse impacts of salinity on pea plants by modifying the plant metabolism and regulating the antioxidant defense system as well as scavenging reactive oxygen species

    How to Differentiate between Resistant and Susceptible Wheat Cultivars for Leaf Rust Fungi Using Antioxidant Enzymes and Histological and Molecular Studies?

    No full text
    Eight wheat cultivars, Sakha-94, Giza-171, Sids-1, Sids-12, Sids-13, Shandweel-1, Misr-1, and Misr-2, were evaluated for leaf rust at the seedling and adult stages in the 2021 and 2022 seasons. Biochemical, histological, and genetic analyses were performed to determine the link between cultivars that were either sensitive or resistant to the disease. Misr-2 and Giza-171 cultivars had the highest levels of resistance to leaf rust races in 2021 (LTCGT, STSJT, and TTTST) and 2022 (MBGJT, TTTKS, and TTTTT) at the seedling stage. However, at the adult stage, Sakha-94, Giza-171, Misr-1, and Misr-2 cultivars had the highest levels of resistance; consequently, they had the lowest final disease severity and the lowest values of AUDPC. The correlation between the seedling reaction and adult reaction was non-significant, with values of 0.4401 and 0.4793 in the 2021 and 2022 seasons, respectively. Throughout the biochemical, histological, and genetic analyses, it was observed that catalase, peroxidase, and polyphenol oxidase activities significantly increased in the resistant cultivars. The discoloration of superoxide (O2-) and hydrogen peroxide (H2O2) significantly decreased in resistant and moderately resistant wheat cultivars (Sakha-94, Giza-171, Misr-1, and Misr-2); higher hydrogen peroxide (H2O2) and superoxide (O2-) levels were recorded for the susceptible cultivars compared to the resistant cultivars. Molecular markers proved that the Lr50 gene was detected in the resistant cultivars. Puccinia triticina infections negatively affected most histological characteristics of flag leaves, especially in susceptible cultivars. The thickness of the blade (µ), the thickness of the upper and lower epidermis (UE and LE), the thickness of mesophyll tissue (MT), and bundle length and width in the midrib were decreased in susceptible cultivars such as Sids-1, Sids-13, and Shandwel-1 compared with resistant cultivars
    corecore