6 research outputs found

    Numerical Analysis of Reinforced Concrete Circular Columns Strengthening With CFRP under Concentric and Eccentric Loadings

    Get PDF
    The purpose of this study is to explore the numerical behavior of circular RC short columns with different degrees of confinement with CFRP (0%, 25%, 50%, and 100%) wraps under concentric and eccentric loading. The numerical analysis carried out by using an improved concrete plastic-damage model (CDPM) implemented in ABAQUS software for finite element (FE) analysis. The FE model simulated a total of twenty-four numerical specimens. The findings were matched to published experimental test results in the literature. The findings of the FE model and the experimental data were good similar. As a consequence, the model was found to be valid. The numerical results shows that as load eccentricity increased, the load carrying capacity of columns decreased for unconfined specimens, whereas the decline in strength for confined specimens becomes limited as the degrees of confinement ratio increased. In addition, increasing the CFRP confinement ratio improves the column's load-bearing capability at the same load eccentricity

    Numerical analysis of reinforced concrete circular columns strengthening with CFRP under concentric and eccentric loadings

    Get PDF
    The purpose of this study is to explore the numerical behavior of circular Reinforced Concrete (RC) short columns with different degrees of confinement with Carbon Fiber Reinforced Polymer (CFRP) (0%, 25%, 50%, and 100%) wraps under concentric and eccentric loading. The numerical analysis carried out by using an improved Concrete Damage plasticity (CDP) model implemented in ABAQUS software for finite element (FE) analysis. The FE model simulated a total of twenty-four numerical specimens. The findings were matched to published experimental test results in the literature. The findings of the FE model and the experimental data were good similar. As a consequence, the model was found to be valid. The numerical results shows that as load eccentricity increased, the load carrying capacity of columns decreased for unconfined specimens, whereas the decline in strength for confined specimens becomes limited as the degrees of confinement ratio increased. In addition, increasing the CFRP confinement ratio improves the column's load-bearing capability at the same load eccentricity

    Can commercial automated immunoassays be utilized to predict neutralizing antibodies after SARS-CoV-2 infection? A comparative study between three different assays.

    Get PDF
    Background: High-throughput assays that can infer neutralizing activity against SARS-CoV-2 are of great importance for assessing the immunity induced by natural infection and COVID-19 vaccines. We aimed to evaluate the performance and degree of correlation of three fully automated anti-SARS-CoV-2 immunoassays with neutralization activity using a surrogate virus-neutralizing test (sVNT) from GenScript, targeting the receptor-binding domain. Methods: 110 sera collected from PCR-confirmed asymptomatic COVID-19 individuals were tested for neutralizing antibodies (nAbs) using the sVNT. Positive samples were tested on three automated immunoassays targeting different viral antigens: Mindray CL-900i®, Abbott Architect, and Ortho VITROS®. The diagnostic sensitivity, specificity, agreement, and correlation with the sVNT were assessed. Receiver operating characteristic (ROC) curve analysis was performed to determine optimal thresholds for predicting the presence of neutralizing activity by each assay. Results: All three assays showed 100% specificities. The highest sensitivity was 99.0%, demonstrated by VITROS®, followed by 94.3%, for CL-900i®, and 81.0%, for Architect. Both VITROS® and CL-900i® had the strongest correlation with the sVNT (ρ = 0.718 and ρ = 0.712, respectively), while Architect showed a moderate correlation (ρ = 0.618). ROC curve analysis indicated that the manufacturer’s recommended cutoff values are adequate for predicting the presence of nAbs and providing a strong correlation with the sVNT. Conclusion: VITROS® and CL-900i® serological assays, which detect antibodies against SARS-CoV-2 spike protein, could serve as reliable assays to predict neutralization activity after infection or vaccinatio
    corecore