2 research outputs found

    Electroluminescence enhancement in mid-infrared InAsSb resonant cavity light emitting diodes for CO 2 detection

    Get PDF
    In this work, we demonstrated a mid-infrared resonant cavity light emitting diode (RCLED) operating near 4.2 μm at room temperature, grown lattice-matched on a GaSb substrate by molecular beam epitaxy, suitable for CO 2 gas detection. The device consists of a 1 λ-thick microcavity containing an InAs 0.90 Sb 0.1 active region sandwiched between two high contrast, lattice-matched AlAs 0.08 Sb 0.92 /GaSb distributed Bragg reflector (DBR) mirrors. The electroluminescence emission spectra of the RCLED were recorded over the temperature range from 20 to 300 K and compared with a reference LED without DBR mirrors. The RCLED exhibits a strong emission enhancement due to resonant cavity effects. At room temperature, the peak emission and the integrated peak emission were found to be increased by a factor of ∼ 70 and ∼ 11, respectively, while the total integrated emission enhancement was ∼ × 33. This is the highest resonant cavity enhancement ever reported for a mid-infrared LED operating at this wavelength. Furthermore, the RCLED also exhibits a superior temperature stability of ∼ 0.35 nm/K and a significantly narrower (10×) spectral linewidth. High spectral brightness and temperature stable emission entirely within the fundamental absorption band are attractive characteristics for the development of next generation CO 2 gas sensor instrumentation. © 2019 Author(s)

    Resonant cavity enhanced InAs/GaAsSb SLS LEDs with a narrow spectral linewidth and a high-spectral intensity operating at 4.6 μm

    No full text
    We investigated the design, growth, fabrication, and characterization of InAs/GaAsSb SLS resonant cavity light emitting diodes (RCLEDs) grown on InAs by molecular beam epitaxy. The structure consists of a 1λ-thick micro-cavity positioned between two lattice-matched AlAsSb/GaAsSb distributed Bragg reflector mirrors (DBRs). A 44-pair InAs/GaAsSb SLS active region is placed at the antinode of the electric field intensity in the center of the cavity. Electroluminescence emission spectra were recorded at room-temperature. Due to the resonant cavity effect, 400 μm-diameter SLS RCLEDs exhibited emission spectra peaked at 4.587 μm with a narrow spectral linewidth of 52 nm. A high-spectral intensity of >3 mW cm−2 nm−1 was achieved for the 400 μm SLS RCLED using 1% duty cycle to avoid Joule heating. Furthermore, temperature dependence of the emission spectra of the RCLED showed excellent temperature stability, with a rate of 0.34 nm/K. Compared to existing mid-infrared 5-stage InAs/GaAsSb SLS ICLEDs operating at ∼4.5 μm, the (400 μm-diameter) InAs/GaAsSb SLS RCLEDs exhibited 10.5× brighter spectral intensity, 14× narrower spectral linewidth, and 8× improvement in the temperature stability. Owing to these attractive features, our SLS RCLEDs could be used to develop the next generation CO gas instruments and active imaging
    corecore