26 research outputs found

    Attitudes toward the use of baby walkers among healthcare personnel

    Get PDF
    BackgroundBaby walkers (BW) are commonly used among the population in Kuwait with high incidence of injuries and without awareness of their harms.AimsThe aim of the study is to identify the attitudes of healthcare personnel in Kuwait towards the use of BW.MethodsSelf-administered questionnaires were distributed among 144 health workers of different specialties in hospitals in the State of Kuwait to find out the perceived benefits and associated risks of BWs.Results108 participants had children and 36 did not. Of those, who had children, 87 (80.6 per cent) have used a BW. The most common reasons for using a BW were: to promote early walking (60.9 per cent), to give the child freedom (44.8 per cent), and to keep the child safe (43.7 per cent) and entertained (43.7 per cent). 20 participants reported injuries sustained from the BW (23.0 per cent). The majority of participants (52.8 per cent), mostly paediatricians and physiotherapists acknowledged the risks of BWs, but most participants also believed that BWs increase a child’s motor activity levels (64.6 per cent).ConclusionHealthcare personnel commonly think highly of BWs and believe that it benefits the child

    Relationship between Helicobacter pylori Virulence Genes and Clinical Outcomes in Saudi Patients

    Get PDF
    Helicobacter pylori has been strongly associated with gastritis, gastric and duodenal ulcers, and it is a risk factor for gastric cancer. Two major virulence factors of H. pylori have been described: the cytotoxin-associated gene product (cagA) and the vacuolating toxin (vacA). Since considerable geographic diversity in the prevalence of H. pylori virulence factors has been reported, the aim of this work was to determine if there is a significant correlation between different H. pylori virulence genes (cagA and vacA) in 68 patients, from Saudi Arabia, and gastric clinical outcomes. H. pylor was recognized in cultures of gastric biopsies. vacA and cagA genes were detected by polymerase chain reaction (PCR). The cagA gene was obtained with 42 isolates (61.8%). The vacA s- and m- region genotypes were determined in all strains studied. Three genotypes were found: s1/m1 (28%), s1/m2 (40%) and s2/m2 (26%). The s2/m1 genotype was not found in this study. The relation of the presence of cagA and the development of cases to gastritis and ulcer was statistically significant (P < 0.05). The study showed a significant correlation between the vacA s1/m2 genotype and gastritis cases, and a significant correlation between vacA s1/m1 genotype and peptic ulcer cases. The results of this study might be used for the identification of high-risk patients who are infected by vacA s1/m1 genotype of H. pylori strains. In conclusion, H. pylori strains of vacA type s1 and the combination of s1/m1 were associated with peptic ulceration and the presence of cagA gene

    Association between Helicobacter pylori genotypes and severity of chronic gastritis, peptic ulcer disease and gastric mucosal interleukin-8 levels: evidence from a study in the Middle East

    Get PDF
    Background: The varied clinical presentations of Helicobacter pylori (H. pylori) infection are most likely due to differences in the virulence of individual strains, which determines its ability to induce production of interleukin-8 (IL-8) in the gastric mucosa. The aim of this study was to examine association between cagA, vacA-s1 and vacA-s2 genotypes of H. pylori and severity of chronic gastritis and presence of peptic ulcer disease (PUD), and to correlate these with IL-8 levels in the gastric mucosa. Methods: Gastric mucosal biopsies were obtained from patients during esophagogastroduodenoscopy. The severity of chronic gastritis was documented using the updated Sydney system. H. pylori cagA and vacA genotypes were detected by PCR. The IL-8 levels in the gastric mucosa were measured by ELISA. Results: H. pylori cagA and/or vacA genotypes were detected in 99 patients (mean age 38.4±12.9; 72 males), of whom 52.5% were positive for cagA, 44.4% for vacA-s1 and 39.4% for vacA-s2; and 70.7% patients had PUD. The severity of inflammation in gastric mucosa was increased with vacA-s1 (p=0.017) and decreased with vacA-s2 (p=0.025), while cagA had no association. The degree of neutrophil activity was not associated with either cagA or vacA-s1, while vacA-s2 was significantly associated with decreased neutrophil activity (p=0.027). PUD was significantly increased in patients with cagA (p=0.002) and vacA-s1 (p=0.031), and decreased in those with vacA-s2 (p=0.011). The level of IL-8 was significantly increased in patients with cagA (p=0.011) and vacA-s1 (p=0.024), and lower with vacA-s2 (p=0.004). Higher levels of IL-8 were also found in patients with a more severe chronic inflammation (p=0.001), neutrophil activity (p=0.007) and those with PUD (p=0.001). Conclusions: Presence of vacA-s1 genotype of H. pylori is associated with more severe chronic inflammation and higher levels of IL-8 in the gastric mucosa, as well as higher frequency of PUD. Patients with vacA-s2 have less severe gastritis, lower levels of IL-8, and lower rates of PUD. The presence of cagA genotype is not associated with the severity of gastritis or IL-8 induction in the gastric mucosa. The association of cagA with PUD may be a reflection of its presence with vacA-s1 genotype

    Endophytic Aspergillus hiratsukae mediated biosynthesis of silver nanoparticles and their antimicrobial and photocatalytic activities

    Get PDF
    In the current study, endophytic Aspergillus hiratsukae was used for the biosynthesis of silver nanoparticles (Ag-NPs) for the first time. The characterizations were performed using X ray diffraction (XRD), Transmission electron microscopy (TEM), Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM–EDX), Dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR), and UV–Vis spectroscopy. The obtained results demonstrated the successful formation of crystalline, spherical Ag-NPs with particle diameters ranging from 16 to 31 nm. The FT-IR studied and displayed the various functional groups involved, which played a role in capping and reducing agents for Ag-NPs production. The SEM–EDX revealed that the main constituent of the AS-formed sample was primarily Ag, with a weight percentage of 64.2%. The mycosynthesized Ag-NPs were assessed for antimicrobial as well as photocatalytic activities. The antimicrobial results indicated that the synthesized Ag-NPs possess notable antibacterial efficacy against Staphylococcus aureus, Bacillus subtilis, and Escherichia coli, with minimum inhibitory concentrations (MICs) of Ag-NPs ranging from 62.5 to 250 μg/mL. Moreover, the biosynthesized Ag-NPs demonstrated weak antifungal activity against Aspergillus brasiliensis and Candida albicans, with MICs of 500 and 1,000 μg/mL, respectively. In addition, the mycosynthesized Ag-NPs exhibited photocatalytic activity toward acid black 2 (nigrosine) dye under both light and dark stimulation. Notably, After 300 min exposure to light, the nigrosine dye was degraded by 93%. In contrast, 51% degradation was observed after 300 min in darkness. In conclusion, Ag-NPs were successfully biosynthesized using endophytic A. hiratsukae and also exhibited antimicrobial and photocatalytic activities that can be used in environmental applications

    Attitudes toward the use of baby walkers among healthcare personnel

    No full text

    Early Autism Detection: Are We Ready for Routine Screening?

    No full text

    Effect of Die Head Temperature at Compounding Stage on the Degradation of Linear Low Density Polyethylene/Plastic Film Waste Blends after Accelerated Weathering

    No full text
    Accelerated weathering test was performed on blends of linear low density polyethylene (LLDPE) and plastic film waste constituting the following percentages of polyolefin polymers (wt.%): LLDPE (46%), low density polyethylene (LDPE, 51%), high density polyethylene (HDPE, 1%), and polypropylene (PP, 2%). Compounded blends were evaluated for their mechanical and physical (optical) properties. The impact of photodegradation on the formulated blends was studied, and loss of mechanical integrity was apparent with respect to both the exposure duration to weathering and waste content. The effect of processing conditions, namely, the die head temperature (DHT) of the blown-film assembly used, was investigated in this work. It was witnessed that surpassing the melting point of the blends constituting polymers did not always result in a synergistic behaviour between polymers. This was suspected to be due to the loss of amorphous region that polyolefin polymers get subjected to with UV exposure under weathering conditions and the effect of the plastic waste constituents. The total change in colour (ΔE) did not change with respect to DHT or waste content due to rapid change degradation on the material’s surface. Haze (%) and light transmission (%) decreased with the increase in waste content which was attributed to lack of miscibility between constituting polymers

    Synthesis, fabrication and mechanical characterization of reinforced epoxy and polypropylene composites for wind turbine blades

    No full text
    Failure of wind turbine blades usually originates from manufacturing defects or in-service defects. In this study, materials selection for manufacturing of wind turbine blades was carried out based on the mechanical and physical results obtained using the Cambridge Engineering Selector program. Thermoplastic and thermosetting composites were synthesized and processed using injection molding and vacuum assisted resin infusion techniques, respectively. Operating conditions (vacuum pressure and temperature) were optimized. The manufactured samples were tested and evaluated using destructive tests. Tensile and fatigue tests were carried out. Polypropylene random discontinuous glass fiber composites were synthesized and processed using mold injection technique. Epoxy-carbon, glass and carbon/Kevlar hybrid fiber composites were manufactured using vacuum assisted resin infusion technique. Surface morphology was characterized using scanning electron microscope analysis. Tensile strength and fatigue resistance were significantly improved by the presence of E-glass fiber (30wt%) in polypropylene-glass fiber composites. The experimental results were compared with the Cambridge Engineering selector software database. Epoxy-carbon (carbon fiber fraction is 0.61) and carbon/Kevlar hybrid (fibers fraction is 0.6) composites showed superior mechanical properties. Epoxy/carbon composite can withstand stresses up to 1390MPa at 106 cycles.</p
    corecore