3 research outputs found

    Intelligent intrusion detection in external communication systems for autonomous vehicles

    Get PDF
    Self-driving vehicles are known to be vulnerable to different types of attacks due to the type of communication systems which are utilized in these vehicles. These vehicles are becoming more reliant on external communication through vehicular ad hoc networks. However, these networks contribute new threats to self-driving vehicles which lead to potentially significant problems in autonomous systems. These communication systems potentially open self-driving vehicles to malicious attacks like the common Sybil attacks, black hole, Denial of Service, wormhole attacks and grey hole attacks. In this paper, an intelligent protection mechanism is proposed, which was created to secure external communications for self-driving and semi-autonomous cars. The protection mechanism is based on the Proportional Overlapping Scores method, which allows to decrease the number of features found in the Kyoto benchmark dataset. This hybrid detection system uses Back Propagation neural networks to detect Denial of Service (DoS), a common type of attack in vehicular ad hoc networks. The results from our experiment revealed that the proposed intrusion detection has the ability to identify malicious vehicles in self-driving and even in semi-autonomous vehicles

    Interlaboratory Comparison of Hydrogen-Deuterium Exchange Mass Spectrometry Measurements of the Fab fragment of NISTmAb

    No full text
    Hydrogen–deuterium exchange mass spectrometry (HDX-MS) is an established, powerful tool for investigating protein–ligand interactions, protein folding, and protein dynamics. However, HDX-MS is still an emergent tool for quality control of biopharmaceuticals and for establishing dynamic similarity between a biosimilar and an innovator therapeutic. Because industry will conduct quality control and similarity measurements over a product lifetime and in multiple locations, an understanding of HDX-MS reproducibility is critical. To determine the reproducibility of continuous-labeling, bottom-up HDX-MS measurements, the present interlaboratory comparison project evaluated deuterium uptake data from the Fab fragment of NISTmAb reference material (PDB: 5K8A) from 15 laboratories. Laboratories reported ∼89 800 centroid measurements for 430 proteolytic peptide sequences of the Fab fragment (∼78 900 centroids), giving ∼100% coverage, and ∼10 900 centroid measurements for 77 peptide sequences of the Fc fragment. Nearly half of peptide sequences are unique to the reporting laboratory, and only two sequences are reported by all laboratories. The majority of the laboratories (87%) exhibited centroid mass laboratory repeatability precisions of ⟨sLab⟩ ≤ (0.15 ± 0.01) Da (1σx̅). All laboratories achieved ⟨sLab⟩ ≤ 0.4 Da. For immersions of protein at THDX = (3.6 to 25) °C and for D2O exchange times of tHDX = (30 s to 4 h) the reproducibility of back-exchange corrected, deuterium uptake measurements for the 15 laboratories is σreproducibility15 Laboratories(tHDX) = (9.0 ± 0.9) % (1σ). A nine laboratory cohort that immersed samples at THDX = 25 °C exhibited reproducibility of σreproducibility25C cohort(tHDX) = (6.5 ± 0.6) % for back-exchange corrected, deuterium uptake measurements
    corecore