5 research outputs found

    Production of Ternary Blend Binder as an Alternative to Portland Cement

    Get PDF
    Environmental pollution and the relatively high cost of waste disposal have been a major focus for scientists around the world, leading researchers to find a solution to reuse waste materials in different applications. Additionally, landfills are considered one of the biggest crisis facing the Iraqi government. Therefore, this study aims to present a new ternary mixture that consists of OPC in addition to Pulverized Fuel Ash (PFA), Ground Granulated Blast Furnace Slag (GGBS) by utilizing it as a partial substitution of cement. A new ternary mortar mixtures containing four substitution levels of cement with GGBS and PFA (0%, 30 %, 50% and 70% by weight) were carried out. The Ultrasonic Pulse Velocity (UPV) and compressive strength tests were adopted to show the influence of GGBS and PFA on mechanical features of cement mortar. Findings indicated that, the compressive strength values were reduced with increasing the GGBS and PFA proportions at all curing ages. For 70% replacement, the compressive strength values were the lowest values comparison with that for control specimens. In contrast, the GGBS and PFA had a negative and positive impacts on the UPV of mortar depending on the substitution ratio. At 30 % substitution levels, the velocity value was enhanced, while other substitution ratios affected negatively on the UPV values

    Impact of high volume GGBS replacement and steel bar length on flexural behaviour of reinforced concrete beams

    Get PDF
    The Ordinary Portland Cement (OPC) is one of the major ingredient utilized for the manufacture of concrete. The manufacturing of cement includes the release of huge amounts of CO2 gas as a main contributor for greenhouse influence and global warming. Several researchers have investigated the characteristics of OPC concrete utilizing cementitious materials like fly ash, silica fume, and Ground Granulated Blast furnace Slag (GGBS) as replacement materials. The article aims to investigate experimentally the flexural behavior of concrete beams with GGBS. The experimental work was divided into three stages, the first one consists of six reinforced concrete beam specimens with (0%, 40% and 60%) of GGBS. During this stage, the used steel bars were 8 mm diameter and 500 mm in length. In the second stage, the length of the steel bars was reduced to 400 mm with the best mixture of (GGBS+OPC) that obtained from stage 1. In the third stage, the best length of steel bars was used with the best (GGBS+OPC) ratio to be tested at 7, 14 and 28 days from the date of casting. Consequences of this exploration suggests that replacement of OPC with 40 percent GGBS with 500 mm steel bar length can be used in reinforced concrete specimens as it shows comparable results relative to control mixtures (0% GGBS)

    The Impact of Using Different Ratios of Latex Rubber on the Characteristics of Mortars Made with GGBS and Portland Cement

    Get PDF
    Preserving natural resources and implementing the concepts of sustainable engineering to approach the zero waste concept helped in reducing the detrimental environmental effects in the last two-decade. Proposed re-using of Ground Granulated Blast Furnace Slag (GGBS) as an alternate solution is to get rid of them and profit from them concurrently. In this process, GGBS is used as cement substitute material to enhance mortar characteristics. On the other hand, the required water for concrete mixture should be characterized by several characters, which similar to drinkable water, therefore, using of Latex Rubber as a water substitution reduces the demand for such water in the construction industry. In this project, percentages of GGBS that have been used were 0%, 10%, 30%, and 50% which compatible with (0, 10, 20 and 30) % of Latex Rubber. Suitable tests were performed to measure properties of mortar by GGBS and Latex Rubber such as setting time, compressive strength and Permeability test (Electrical resistivity). The results obtained indicate that the setting time reduced with increasing Rubber Latex in spite of increasing the proportion of water to binder. Additionally, increasing the Latex Rubber amount leads to decrease the compressive strength and electrical resistivity of mortars

    Influence of High Volume RHA on Properties of Cement Mortar

    Get PDF
    This work study the impact of partial cement replacement by high volume Rice Husk Ash (RHA) on some characteristics of cement mortar like compressive strength and flexural strength at different ages. In this research, RHA was used in three different ratios (20, 40, and 60)% as a cement substitution and the findings were compared with control mixture (0% RHA). The findings demonstrated that the replacement of cement by RHA reduced the compressive strength of all selected ratios and the increase in the content of RHA lead to reduce compressive strength comparative to control sample with 100% cement as a binder at all ages. However, the flexural strength results indicated that the RHA in 20% showed approximately same results as control sample at early ages while increasing the curing period lead to improve flexural strength. Increasing RHA higher than 20% lead to decrease Flexural strength at all selected ages

    Early age assessment of cement mortar incorporated high volume fly ash

    Get PDF
    The technique of replacing the cement with other alternative materials focuses on the production of materials with similar performance and reduced environmental impacts relative to traditional cement. The main aim of this study is to investigate the effect of replacing the cement content with high volume of Pulverised Fuel Ash (PFA) on the mechanical performance of cement mortar. Three mixtures were prepared with different percentages of PFA (20%, 40% and 60%) as replacement of cement along with other mixture that made with 100% cement as a control mixture. In order to evaluate the performance of the cement mortars, compressive strength and Ultrasonic Pulse Velocity (UPV) tests after 7, 14 and 28 days of curing was used. The results indicated that for all ages of curing, the increase of PFA contents caused a reduction in the compressive strength and UPV in comparison with the control mixture. After 28 days of curing, the results indicated that the mixture incorporated 20% PFA has similar UPV value relative to the control mixture. Such findings will significantly contribute in reducing the cost of the produced mortar by reducing the amount of used cement and this consequently reduce the cement demands/manufacturing. Less production of cement will reduce the Carbon Dioxide (CO2) emissions of the cement industry
    corecore