5 research outputs found

    Mixing of spin and orbital angular momenta via second-harmonic generation in plasmonic and dielectric chiral nanostructures

    Get PDF
    We present a theoretical study of the characteristics of the nonlinear spin-orbital angular momentum coupling induced by second-harmonic generation in plasmonic and dielectric nanostructures made of centrosymmetric materials. In particular, the connection between the phase singularities and polarization helicities in the longitudinal components of the fundamental and second-harmonic optical fields and the scatterer symmetry properties are discussed. By in-depth comparison between the interaction of structured optical beams with plasmonic and dielectric nanostructures, we have found that all-dielectric and plasmonic nanostructures that exhibit magnetic and electric resonances have comparable second-harmonic conversion efficiency. In addition, mechanisms for second-harmonic enhancement for single and chiral clusters of scatterers are unveiled and the relationships between the content of optical angular momentum of the incident optical beams and the enhancement of nonlinear light scattering is discussed. In particular, we formulate a general angular momenta conservation law for the nonlinear spin-orbital angular momentum interaction, which includes the quasi-angular-momentum of chiral structures with different-order rotational symmetry. As a key conclusion of our study relevant to nanophotonics, we argue that all-dielectric nanostructures provide a more suitable platform to investigate experimentally the nonlinear interaction between spin and orbital angular momenta, as compared to plasmonic ones, chiefly due to their narrower resonance peaks, lower intrinsic losses, and higher sustainable optical power

    Time domain integral equation techniques : 1D and 3D models

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Open problems in CEM: Porting an explicit time-domain volume-integral- equation solver on GPUs with OpenACC

    No full text
    Graphics processing units (GPUs) are gradually becoming mainstream in high-performance computing, as their capabilities for enhancing performance of a large spectrum of scientific applications to many fold when compared to multi-core CPUs have been clearly identified and proven. In this paper, implementation and performance-tuning details for porting an explicit marching-on-in-time (MOT)-based time-domain volume-integral-equation (TDVIE) solver onto GPUs are described in detail. To this end, a high-level approach, utilizing the OpenACC directive-based parallel programming model, is used to minimize two often-faced challenges in GPU programming: developer productivity and code portability. The MOT-TDVIE solver code, originally developed for CPUs, is annotated with compiler directives to port it to GPUs in a fashion similar to how OpenMP targets multi-core CPUs. In contrast to CUDA and OpenCL, where significant modifications to CPU-based codes are required, this high-level approach therefore requires minimal changes to the codes. In this work, we make use of two available OpenACC compilers, CAPS and PGI. Our experience reveals that different annotations of the code are required for each of the compilers, due to different interpretations of the fairly new standard by the compiler developers. Both versions of the OpenACC accelerated code achieved significant performance improvements, with up to 30× speedup against the sequential CPU code using recent hardware technology. Moreover, we demonstrated that the GPU-accelerated fully explicit MOT-TDVIE solver leveraged energy-consumption gains of the order of 3× against its CPU counterpart
    corecore