638 research outputs found

    Design of Cationic Multi-Walled Carbon Nanotubes as Efficient siRNA Vectors for Lung Cancer Xenograft Eradication

    Get PDF
    Polo-Like Kinase (PLK1) has been identified as a potential target in cancer gene therapy via chemical or genetic inhibitory approaches. The biomedical applications of chemically functionalized carbon nanotubes (f-CNTs) in cancer therapy have been studied due to their ability to efficiently deliver siRNA intracellularly. In this study, we established the capacity of cationic MWNT-NH3+ to deliver the apoptotic siRNA against PLK1 (siPLK1) in Calu6 tumor xenografts by direct intratumoural injections. A direct comparison with cationic liposomes was made. This study validates the PLK1 gene as a potential target in cancer gene therapy including lung cancer, as demonstrated by the therapeutic efficacy of siPLK1:MWNT-NH3+ complexes and their ability to significantly improve animal survival. Biological analysis of the siPLK1:MWNT-NH3+ treated tumors by RT-PCR and Western blot, in addition to TUNEL staining confirmed the biological functionality of the siRNA intratumourally, suggesting that tumor eradication was due to PLK1 knockdown. Furthermore, by using a fluorescently labelled, non-coding siRNA sequence complexed with MWNT-NH3+, we established for the first time that the improved therapeutic efficacy observed in f-CNT-based siRNA delivery is directly proportional to the enhanced siRNA retention in the solid tumor and subsequent uptake by tumor cells after local administration in vivo

    Partial-thickness macular hole in vitreomacular traction syndrome: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Vitreomacular traction syndrome has recently been recognized as a distinct clinical condition. It may lead to many complications, such as cystoid macular edema, macular pucker formation, tractional macular detachment, and full-thickness macular hole formation.</p> <p>Case presentation</p> <p>We report a case of vitreomacular traction syndrome with eccentric traction at the macula and a partial-thickness macular hole in a 63-year-old Pakistani Punjabi man. The patient was evaluated using optical coherence tomography, and he underwent a successful pars plana vitrectomy. After the operation, his foveal contour regained normal configuration, and his visual acuity improved from 20/60 to 20/30.</p> <p>Conclusions</p> <p>Pars plana vitrectomy prevents the progression of a partial thickness macular hole in vitreomacular traction syndrome. The relief of traction by vitrectomy restores foveal anatomy and visual acuity in this condition.</p

    Regulatory T Cell Extracellular Vesicles Modify T-Effector Cell Cytokine Production and Protect Against Human Skin Allograft Damage

    Get PDF
    Regulatory T cells (Tregs) are a subpopulation of CD4âș T cells with a fundamental role in maintaining immune homeostasis and inhibiting unwanted immune responses using several different mechanisms. Recently, the intercellular transfer of molecules between Tregs and their target cells has been shown via trogocytosis and the release of small extracellular vesicles (sEVs). In this study, CD4âșCD25âșCD127ËĄá”’ human Tregs were found to produce sEVs capable of inhibiting the proliferation of effector T cells (Teffs) in a dose dependent manner. These vesicles also modified the cytokine profile of Teffs leading to an increase in the production of IL-4 and IL-10 whilst simultaneously decreasing the levels of IL-6, IL-2, and IFNÎł. MicroRNAs found enriched in the Treg EVs were indirectly linked to the changes in the cytokine profile observed. In a humanized mouse skin transplant model, human Treg derived EVs inhibited alloimmune-mediated skin tissue damage by limiting immune cell infiltration. Taken together, Treg sEVs may represent an exciting cell-free therapy to promote transplant survival

    Magnetically Decorated Multiwalled Carbon Nanotubes as Dual MRI and SPECT Contrast Agents

    Get PDF
    Carbon nanotubes (CNTs) have been proposed as one of the most promising nanomaterials to be used in biomedicine for their applications in drug/gene delivery as well as biomedical imaging. The present study developed radio-labeled iron oxide decorated multi-walled CNTs (MWNT) as dual magnetic resonance (MR) and single photon emission computed tomography (SPECT) imaging agents. Hybrids containing different amounts of iron oxide were synthesized by in situ generation. Physicochemical characterisations revealed the presence of superparamagnetic iron oxide nanoparticles (SPION) granted the magnetic properties of the hybrids. Further comprehensive examinations including high resolution transmission electron microscopy (HRTEM), fast Fourier transform simulations (FFT), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) assured the conformation of prepared SPION as Îł-Fe(2)O(3). High r(2) relaxivities were obtained in both phantom and in vivo MRI compared to the clinically approved SPION Endorem(Âź). The hybrids were successfully radio-labeled with technetium-99m through a functionalized bisphosphonate and enabled SPECT/CT imaging and Îł-scintigraphy to quantitatively analyze the biodistribution in mice. No abnormality was found by histological examination and the presence of SPION and MWNT were identified by Perls stain and Neutral Red stain, respectively. TEM images of liver and spleen tissues showed the co-localization of SPION and MWNT within the same intracellular vesicles, indicating the in vivo stability of the hybrids after intravenous injection. The results demonstrated the capability of the present SPION-MWNT hybrids as dual MRI and SPECT contrast agents for in vivo use

    Kinetics of functionalised carbon nanotube distribution in mouse brain after systemic injection: Spatial to ultra-structural analyses.

    Get PDF
    Earlier studies proved the success of using chemically functionalised multi-walled carbon nanotubes (f-MWNTs) as nanocarriers to the brain. Little insight into the kinetics of brain distribution of f-MWNTs in vivo has been reported. This study employed a wide range of qualitative and quantitative techniques with the aim of shedding the light on f-MWNT's brain distribution following intravenous injection. Îł-Scintigraphy quantified the uptake of studied radiolabelled f-MWNT in the whole brain parenchyma and capillaries while 3D-single photon emission computed tomography/computed tomography imaging and autoradiography illustrated spatial distribution within various brain regions. Raman and multiphoton luminescence together with transmission electron microscopy confirmed the presence of intact f-MWNT in mouse brain, in a label-free manner. The results evidenced the presence of f-MWNT in mice brain parenchyma, in addition to brain endothelium. Such information on the rate and extent of regional and cellular brain distribution is needed before further implementation into neurological therapeutics can be made.journal articleresearch support, non-u.s. gov't2016 Feb 282015 12 30importe

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    FIB-SEM imaging of carbon nanotubes in mouse lung tissue

    Get PDF
    Ultrastructural characterisation is important for understanding carbon nanotube (CNT) toxicity and how the CNTs interact with cells and tissues. The standard method for this involves using transmission electron microscopy (TEM). However, in particular, the sample preparation, using a microtome to cut thin sample sections for TEM, can be challenging for investigation of regions with agglomerations of large and stiff CNTs because the CNTs cut with difficulty. As a consequence, the sectioning diamond knife may be damaged and the uncut CNTs are left protruding from the embedded block surface excluding them from TEM analysis. To provide an alternative to ultramicrotomy and subsequent TEM imaging, we studied focused ion beam scanning electron microscopy (FIB-SEM) of CNTs in the lungs of mice, and we evaluated the applicability of the method compared to TEM. FIB-SEM can provide serial section volume imaging not easily obtained with TEM, but it is time-consuming to locate CNTs in the tissue. We demonstrate that protruding CNTs after ultramicrotomy can be used to locate the region of interest, and we present FIB-SEM images of CNTs in lung tissue. FIB-SEM imaging was applied to lung tissue from mice which had been intratracheally instilled with two different multiwalled CNTs; one being short and thin, and the other longer and thicker. FIB-SEM was found to be most suitable for detection of the large CNTs (Ø ca. 70 nm), and to be well suited for studying CNT agglomerates in biological samples which is challenging using standard TEM techniques. [Figure: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00216-013-7566-x) contains supplementary material, which is available to authorized users
    • 

    corecore