3 research outputs found

    Characterisation of anticancer properties of a novel and naturally isolated bisindole alkaloid, conofolidine

    Get PDF
    Natural products play a pivotal role in the exploration of new cancer therapies of which the plant kingdom is a substantial source. Conofolidine is a novel bisindole alkaloid isolated from Malayan plant Tabernaemontana Corymbosa and belongs to the family of the known vinca alkaloid conophylline. To our knowledge, no published work existed at the time of commencement of this project. Herein, we report for the first time recognition of conofolidineā€™s exceptional anticancer activity, from a panel of Malayan bisindoles (namely leucophyllidine, bipleiophylline and alstonia macroline-sarpagine bisindoles) that were indiscriminately screened against various human-derived carcinoma cell lines. Preliminary data showed that conofolidine exerted remarkable inhibition of cell proliferation and colony formation of cancer cells (e.g. GI50 = 0.054 and IC50 < 0.1 Ī¼M in MCF-7) through either induction of apoptosis or senescence. Apoptosis was confirmed by accumulation of cleaved PARP and activation of caspases 3/7. Alternatively, increased Ī²-galactosidase positive cells accompanied by transformation of cell shape to spindle like with enlarged cell size ascertained senescence induction. G1 cell cycle arrest and S-phase depletion were observed in the majority of tested cell lines. These cell cycle perturbations were confirmed by decreased expression of positive regulators (CDK2, cyclin A2 and c-Myc) and increased expression of CDK inhibitors p21WAF1/CIP1, p27KIP1 and p15INK4b. Conofolidine caused several aberrant mitotic phenotypes exemplified by multi-nucleation, mitotic slippage, changed polarity, membrane blebbing and DNA fragmentation. Compromised DNA integrity was confirmed by increased Ī³-H2AX foci and/or level indicating DNA double strand breaks. Conofolidine increased ROS production, which partly contributed to DNA damage, apoptosis- and senescence-induction. A proteomic study conducted following exposure of HT-29 cells to conofolidine (72 h; 0.602 ĀµM) corroborated ROS generation by the increased expression of several ROS scavengers e.g. NQO1. Phospho-proteomics analyses revealed significant suppression of p-EGFR, p-Akt, p-ERK and p-STAT signal transduction. Such suppression caused c-Myc destabilisation with consequent eliciting of either apoptotic or senescent phenotypes. The variation in the basal phosphorylation levels of these signalling proteins in the different tested cell lines determined their fates. Additionally conofolidine down-regulated mutant-p53 at transcription, expression and post-translational levels in mutant-p53 (R273H) cell lines which could partly contribute to its suppressive actions on signalling pathways and cell cycle. Proteomic analyses showed decreased expressions of MCM (2-7) including MCM4 through which mutant-p53 (R273H) could drive initiation of DNA replication. Conofolidineā€™s ability to suppress MCM family (together with ROS production) provides an additional mechanism for conofolidine to induce DNA damage and genomic instability. Taken together, we present conofolidine in this study as potential anticancer candidate and provide mechanistic insight to its molecular targets and pathways, which encourage further future work

    Conofolidine, a Natural Plant Alkaloid Causes Apoptosis and Senescence in Cancer Cells

    Get PDF
    Natural products contribute substantially to anticancer therapy; the plant kingdom provides an important source of molecules. Conofolidine is a novel Aspidosperma-Aspidosperma bisindole alkaloid isolated from the Malayan plant Tabernaemontana corymbosa. Herein, we report conofolidineā€™s anticancer activity together with that of three other bisindoles - conophylline, leucophyllidine and bipleiophylline against human-derived carcinoma cell lines. Remarkably, conofolidine was able to induce apoptosis (as observed in MDA-MB-468 breast cancer cells) or senescence (as detected in HT-29 colorectal carcinoma cells). Annexin V-FITC/PI, caspase activation and PARP cleavage confirmed the former while positive Ī²-gal staining corroborated the latter. Evident cell cycle perturbations were observed comprising S-phase depletion, accompanied by downregulated CDK2, and cyclins (A2, D1) with p21 upregulation. Confocal imaging of HCT-116 cells revealed induction of aberrant mitotic phenotypes - multi-nucleation, membrane blebbing and DNA-fragmentation. The DNA integrity assessment of HCT-116 and MDA-MB-468 showed irreparable damage identified by increased fluorescent Ī³-H2AX during the G1 cell cycle phase. Furthermore, Ī³-H2AX foci were visually validated in HCT-116 and MDA-MB-468 cells using confocal microscopy. Conofolidine increased oxidative stress, preceding apoptosis- and senescence-induction in most carcinoma cell lines as seen by enhanced ROS levels accompanied by NQO1 expression. Collectively, we present conofolidine as a potential anticancer candidate capable of inducing heterogeneous modes of cancer cell death in vitro, encouraging further preclinical evaluation of this natural product

    Characterisation of anticancer properties of a novel and naturally isolated bisindole alkaloid, conofolidine

    No full text
    Natural products play a pivotal role in the exploration of new cancer therapies of which the plant kingdom is a substantial source. Conofolidine is a novel bisindole alkaloid isolated from Malayan plant Tabernaemontana Corymbosa and belongs to the family of the known vinca alkaloid conophylline. To our knowledge, no published work existed at the time of commencement of this project. Herein, we report for the first time recognition of conofolidineā€™s exceptional anticancer activity, from a panel of Malayan bisindoles (namely leucophyllidine, bipleiophylline and alstonia macroline-sarpagine bisindoles) that were indiscriminately screened against various human-derived carcinoma cell lines. Preliminary data showed that conofolidine exerted remarkable inhibition of cell proliferation and colony formation of cancer cells (e.g. GI50 = 0.054 and IC50 < 0.1 Ī¼M in MCF-7) through either induction of apoptosis or senescence. Apoptosis was confirmed by accumulation of cleaved PARP and activation of caspases 3/7. Alternatively, increased Ī²-galactosidase positive cells accompanied by transformation of cell shape to spindle like with enlarged cell size ascertained senescence induction. G1 cell cycle arrest and S-phase depletion were observed in the majority of tested cell lines. These cell cycle perturbations were confirmed by decreased expression of positive regulators (CDK2, cyclin A2 and c-Myc) and increased expression of CDK inhibitors p21WAF1/CIP1, p27KIP1 and p15INK4b. Conofolidine caused several aberrant mitotic phenotypes exemplified by multi-nucleation, mitotic slippage, changed polarity, membrane blebbing and DNA fragmentation. Compromised DNA integrity was confirmed by increased Ī³-H2AX foci and/or level indicating DNA double strand breaks. Conofolidine increased ROS production, which partly contributed to DNA damage, apoptosis- and senescence-induction. A proteomic study conducted following exposure of HT-29 cells to conofolidine (72 h; 0.602 ĀµM) corroborated ROS generation by the increased expression of several ROS scavengers e.g. NQO1. Phospho-proteomics analyses revealed significant suppression of p-EGFR, p-Akt, p-ERK and p-STAT signal transduction. Such suppression caused c-Myc destabilisation with consequent eliciting of either apoptotic or senescent phenotypes. The variation in the basal phosphorylation levels of these signalling proteins in the different tested cell lines determined their fates. Additionally conofolidine down-regulated mutant-p53 at transcription, expression and post-translational levels in mutant-p53 (R273H) cell lines which could partly contribute to its suppressive actions on signalling pathways and cell cycle. Proteomic analyses showed decreased expressions of MCM (2-7) including MCM4 through which mutant-p53 (R273H) could drive initiation of DNA replication. Conofolidineā€™s ability to suppress MCM family (together with ROS production) provides an additional mechanism for conofolidine to induce DNA damage and genomic instability. Taken together, we present conofolidine in this study as potential anticancer candidate and provide mechanistic insight to its molecular targets and pathways, which encourage further future work
    corecore