4 research outputs found

    Reported Adverse Effects and Attitudes among Arab Populations Following COVID-19 Vaccination: A Large-Scale Multinational Study Implementing Machine Learning Tools in Predicting Post-Vaccination Adverse Effects Based on Predisposing Factors

    Get PDF
    Background: The unprecedented global spread of coronavirus disease 2019 (COVID-19) has imposed huge challenges on the healthcare facilities, and impacted every aspect of life. This has led to the development of several vaccines against COVID-19 within one year. This study aimed to assess the attitudes and the side effects among Arab communities after receiving a COVID-19 vaccine and use of machine learning (ML) tools to predict post-vaccination side effects based on predisposing factors. Methods: An online-based multinational survey was carried out via social media platforms from June 14 to 31 August 2021, targeting individuals who received at least one dose of a COVID-19 vaccine from 22 Arab countries. Descriptive statistics, correlation, and chi-square tests were used to analyze the data. Moreover, extensive ML tools were utilized to predict 30 post vaccination adverse effects and their severity based on 15 predisposing factors. The importance of distinct predisposing factors in predicting particular side effects was determined using global feature importance employing gradient boost as AutoML. Results: A total of 10,064 participants from 19 Arab countries were included in this study. Around 56% were female and 59% were aged from 20 to 39 years old. A high rate of vaccine hesitancy (51%) was reported among participants. Almost 88% of the participants were vaccinated with one of three COVID-19 vaccines, including Pfizer BioNTech (52.8%), AstraZeneca (20.7%), and Sinopharm (14.2%). About 72% of participants experienced post-vaccination side effects. This study reports statistically significant associations (p < 0.01) between various predisposing factors and post-vaccinations side effects. In terms of predicting post-vaccination side effects, gradient boost, random forest, and XGBoost outperformed other ML methods. The most important predisposing factors for predicting certain side effects (i.e., tiredness, fever, headache, injection site pain and swelling, myalgia, and sleepiness and laziness) were revealed to be the number of doses, gender, type of vaccine, age, and hesitancy to receive a COVID-19 vaccine. Conclusions: The reported side effects following COVID-19 vaccination among Arab populations are usually non-life-threatening; flu-like symptoms and injection site pain. Certain predisposing factors have greater weight and importance as input data in predicting post-vaccination side effects. Based on the most significant input data, ML can also be used to predict these side effects; people with certain predicted side effects may require additional medical attention, or possibly hospitalization

    Antiviral and Immunomodulatory Effects of Phytochemicals from Honey against COVID-19: Potential Mechanisms of Action and Future Directions

    No full text
    The new coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has recently put the world under stress, resulting in a global pandemic. Currently, there are no approved treatments or vaccines, and this severe respiratory illness has cost many lives. Despite the established antimicrobial and immune-boosting potency described for honey, to date there is still a lack of evidence about its potential role amid COVID-19 outbreak. Based on the previously explored antiviral effects and phytochemical components of honey, we review here evidence for its role as a potentially effective natural product against COVID-19. Although some bioactive compounds in honey have shown potential antiviral effects (i.e., methylglyoxal, chrysin, caffeic acid, galangin and hesperidinin) or enhancing antiviral immune responses (i.e., levan and ascorbic acid), the mechanisms of action for these compounds are still ambiguous. To the best of our knowledge, this is the first work exclusively summarizing all these bioactive compounds with their probable mechanisms of action as antiviral agents, specifically against SARS-CoV-2

    Side Effects and Perceptions Following COVID-19 Vaccination in Jordan: A Randomized, Cross-Sectional Study Implementing Machine Learning for Predicting Severity of Side Effects

    No full text
    Background: Since the coronavirus disease 2019 (COVID-19) was declared a pandemic, there was no doubt that vaccination is the ideal protocol to tackle it. Within a year, a few COVID-19 vaccines have been developed and authorized. This unparalleled initiative in developing vaccines created many uncertainties looming around the efficacy and safety of these vaccines. This study aimed to assess the side effects and perceptions following COVID-19 vaccination in Jordan. Methods: A cross-sectional study was conducted by distributing an online survey targeted toward Jordan inhabitants who received any COVID-19 vaccines. Data were statistically analyzed and certain machine learning (ML) tools, including multilayer perceptron (MLP), eXtreme gradient boosting (XGBoost), random forest (RF), and K-star were used to predict the severity of side effects. Results: A total of 2213 participants were involved in the study after receiving Sinopharm, AstraZeneca, Pfizer-BioNTech, and other vaccines (38.2%, 31%, 27.3%, and 3.5%, respectively). Generally, most of the post-vaccination side effects were common and non-life-threatening (e.g., fatigue, chills, dizziness, fever, headache, joint pain, and myalgia). Only 10% of participants suffered from severe side effects; while 39% and 21% of participants had moderate and mild side effects, respectively. Despite the substantial variations between these vaccines in the presence and severity of side effects, the statistical analysis indicated that these vaccines might provide the same protection against COVID-19 infection. Finally, around 52.9% of participants suffered before vaccination from vaccine hesitancy and anxiety; while after vaccination, 95.5% of participants have advised others to get vaccinated, 80% felt more reassured, and 67% believed that COVID-19 vaccines are safe in the long term. Furthermore, based on the type of vaccine, demographic data, and side effects, the RF, XGBoost, and MLP gave both high accuracies (0.80, 0.79, and 0.70, respectively) and Cohen’s kappa values (0.71, 0.70, and 0.56, respectively). Conclusions: The present study confirmed that the authorized COVID-19 vaccines are safe and getting vaccinated makes people more reassured. Most of the post-vaccination side effects are mild to moderate, which are signs that body’s immune system is building protection. ML can also be used to predict the severity of side effects based on the input data; predicted severe cases may require more medical attention or even hospitalization

    Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects

    No full text
    Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant&rsquo;s early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors
    corecore