1 research outputs found

    Middle Miocene Evaporites from Northern Iraq: Petrography, Geochemistry, and Cap Rock Efficiency

    Get PDF
    Evaporites (gypsum and anhydrite) of the middle Miocene age (Fat’ha Formation) form one of the main sulfate cap rocks in the Middle East oilfields. Detailed petrographic and diagenetic investigations accompanied with geochemical analysis of these evaporite rocks in Mosul and Kirkuk areas of northern Iraq have revealed that nodular gypsum is the dominant type, whereas laminated, structureless, and secondary (selenite and satin spar) also are present. Nodular gypsum was deposited in a very shallow, arid, and semi-restricted lagoonal environment which has undergone influx and reflux processes, while laminated gypsum may represent pulses of freshwater into the lagoonal basin of Fat’ha Formation. Low strontium values of the secondary and laminated gypsum may attribute to their secondary origin by hydration processes from the original anhydrite. Based on petrographic, diagenetic, and petrophysical (porosity and permeability) properties, it appears that the efficiency of the Fat’ha sulfates as petroleum cap rocks increases with increasing nodular growth and compaction degree. The occasional presence of bitumen inclusions with both nodular gypsum and host materials relates to early leakage of the hydrocarbons which were being halt due to the growing and packing of nodules and host materials
    corecore