6 research outputs found

    Analyzing and enhancing OSKI for sparse matrix-vector multiplication

    Get PDF
    Sparse matrix-vector multiplication (SpMxV) is a kernel operation widely used in iterative linear solvers. The same sparse matrix is multiplied by a dense vector repeatedly in these solvers. Matrices with irregular sparsity patterns make it difficult to utilize cache locality effectively in SpMxV computations. In this work, we investigate single- and multiple-SpMxV frameworks for exploiting cache locality in SpMxV computations. For the single-SpMxV framework, we propose two cache-size-aware top-down row/column-reordering methods based on 1D and 2D sparse matrix partitioning by utilizing the column-net and enhancing the row-column-net hypergraph models of sparse matrices. The multiple-SpMxV framework depends on splitting a given matrix into a sum of multiple nonzero-disjoint matrices so that the SpMxV operation is performed as a sequence of multiple input- and output-dependent SpMxV operations. For an effective matrix splitting required in this framework, we propose a cache-size-aware top-down approach based on 2D sparse matrix partitioning by utilizing the row-column-net hypergraph model. The primary objective in all of the three methods is to maximize the exploitation of temporal locality. We evaluate the validity of our models and methods on a wide range of sparse matrices by performing actual runs through using OSKI. Experimental results show that proposed methods and models outperform state-of-the-art schemes.Comment: arXiv admin note: substantial text overlap with arXiv:1202.385

    Eocene shallow-marine ostracods from Madagascar: southern end of the Tethys?

    No full text
    corecore