29 research outputs found

    Whole-genome sequencing and phylogenetic analysis of rabies viruses from Jordan

    Get PDF
    Human fatalities caused by rabies are rarely reported in Jordan; however, domestic animals are more likely to fall victim to rabies compared to wild animals, at least this is the case in Jordan due to the presence of canine rabies. In this study, twelve brain samples from domestic and wild animals suspected of being infected with rabies virus from different regions of Jordan were collected during 2019. Seven of them tested positive using the fluorescent antibody test and real-time SYBR RT-PCR assay. Five specimens were from stray dogs and two from foxes. The whole genome sequences were obtained from the positive samples. Sequence analysis showed that one dog virus from Al Quwaysimah city located in Amman governorate, was closely related to an Israeli strain belonging to a Cosmopolitan ME1a clade. The genomes of the remaining six viruses (four from dogs and two from foxes) collected from different areas of Jordan were genetically-related to each other and clustered together with sequences from Iran and Turkey; all belong to Cosmopolitan ME2 clade. These sequences were analyzed with six other Jordanian rabies virus nucleoprotein (N) gene sequences available in the public database, five of them belong to ME1a clade and one belongs to ME1b clade. Rabies virus whole genome data is scarce across the Middle East. This study provides a better understanding of the molecular epidemiology of rabies virus in the region

    Bat-Borne Coronaviruses in Jordan and Saudi Arabia: A Threat to Public Health?

    No full text
    Emerging infectious diseases are of great concern to public health, as highlighted by the ongoing coronavirus disease 2019 (COVID-19) pandemic. Such diseases are of particular danger during mass gathering and mass influx events, as large crowds of people in close proximity to each other creates optimal opportunities for disease transmission. The Hashemite Kingdom of Jordan and the Kingdom of Saudi Arabia are two countries that have witnessed mass gatherings due to the arrival of Syrian refugees and the annual Hajj season. The mass migration of people not only brings exotic diseases to these regions but also brings new diseases back to their own countries, e.g., the outbreak of MERS in South Korea. Many emerging pathogens originate in bats, and more than 30 bat species have been identified in these two countries. Some of those bat species are known to carry viruses that cause deadly diseases in other parts of the world, such as the rabies virus and coronaviruses. However, little is known about bats and the pathogens they carry in Jordan and Saudi Arabia. Here, the importance of enhanced surveillance of bat-borne infections in Jordan and Saudi Arabia is emphasized, promoting the awareness of bat-borne diseases among the general public and building up infrastructure and capability to fill the gaps in public health preparedness to prevent future pandemics

    PRELIMINARY TEST ON DNA EXTRACTED FROM BONES AND TEETH EXCAVATED AT THE TELL DAMIYAH SITE, JORDAN

    No full text
    This preliminary investigation aimed to assess the DNA found in human bones and teeth recovered from the archaeological site of Tell Damiyah. The primary objective was to gather data that could contribute to the ongoing archaeological research focused on understanding the migration patterns of ancient societies in the Central Jordan Valley of southern Levant and their interactions with the surrounding regions. The bone and teeth samples, obtained from the Byzantine and Ottoman contexts at Tell Damiyah, were subjected to DNA extraction and analysis. The results revealed that only two teeth samples from the Byzantine period contained viable DNA suitable for extraction. This was due to the suboptimal preservation of DNA in the remaining samples. Consequently, the DNA data obtained from this study were included in the human DNA database of cultural heritage sites in Jordan, enabling comparison and interpretation with future DNA data obtained from comparable samples. As a result, it is recommended to conduct further DNA investigations on bone and teeth samples, particularly those obtained from recently excavated contexts at Tell Damiyah or other related and comparable sites

    Effects of CYP2C9 and VKORC1 polymorphisms on warfarin sensitivity and responsiveness during the stabilization phase of therapy

    No full text
    The main objective of this study is to assess the effects of CYP2C9 and VKORC1 polymorphisms on warfarin sensitivity and responsiveness in a Jordanian population during the stabilization phase of treatment. This study was conducted at the Queen Alia Heart Institute (QAHI) anticoagulation clinic in Amman, Jordan. We assessed three CYP2C9 (rs1799853, rs1057910, rs4086116) and four VKORC1 (rs10871454, rs8050894, rs9934438, rs17708472) polymorphisms in 139 Jordanian cardiovascular patients. Demographic and clinical data were also collected. Of the 139 patients in the cohort, 80% had the VKORC1 polymorphisms rs10871454 and rs9934438, while 22.3% and 24.5% of patients had the rs1799853 and rs1057910 CYP2C9 alleles, respectively. Carriers of the CYP2C9 polymorphisms rs1057910 and rs4086116 had an increased risk of warfarin sensitivity compared to subjects with no or only one polymorphism. Similarly, carriers of all four VKORC1 variants had an increased risk of warfarin sensitivity (over anticoagulation) compared to those with no or only one polymorphism. Patients with a CYP2C9 or VKORC1 polymorphism required significantly lower doses than patients with no polymorphisms. The presence of any of CYP2C9 or VKORC1 polymorphisms is associated with sensitivity to warfarin during the stabilization period. Being a CYP2C9 or VKORC1 polymorphism carrier is associated with a variation in doses required to achieve the therapeutic INR compared to non-carrier patients. Keywords: CYP2C9, VKORC1, Warfarin, Warfarin maintenance phase of therapy, IN

    Integrative analysis of gene expression and DNA methylation to identify biomarkers of non-genital warts induced by low-risk human papillomaviruses infection

    No full text
    Background: Human papillomaviruses have been shown to dysregulate the gene expression and DNA methylation profiles of their host cells over the course of infection. However, there is a lack of information on the impact of low-risk HPV infection and wart formation on host cell's expression and methylation patterns. Therefore, the objective of this study is to analyse the genome and methylome of common warts using an integrative approach. Methods: In the present study, gene expression (GSE136347) and methylation (GSE213888) datasets of common warts were obtained from the GEO database. Identification of the differentially expressed and differentially methylated genes was carried out using the RnBeads R package and the edgeR Bioconductor package. Next, functional annotation of the identified genes was obtained using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Network construction and analyses of the gene-gene, protein-protein, and signaling interactions of the differentially expressed and differentially methylated genes was performed using the GeneMANIA web interface, the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and the Signaling Network Open Resource 2.0 (SIGNOR 2.0), respectively. Lastly, significant hub genes were identified using the Cytoscape application CytoHubba. Results: A total of 276 genes were identified as differentially expressed and differentially methylated in common warts, with 52% being upregulated and hypermethylated. Functional enrichment analysis identified extracellular components as the most enriched annotations, while network analyses identified ELN, ITGB1, TIMP1, MMP2, LGALS3, COL1A1 and ANPEP as significant hub genes. Conclusions: To the best knowledge of the authors, this is the first integrative study to be carried out on non-genital warts induced by low-risk HPV types. Future studies are required to re-validate the findings in larger populations using alternative approaches

    Impact of <i>CYP2C9</i> and <i>VKORC1</i> Polymorphisms on Warfarin Sensitivity and Responsiveness in Jordanian Cardiovascular Patients during the Initiation Therapy

    No full text
    Warfarin is an oral anticoagulant frequently used in the treatment of different cardiovascular diseases. Genetic polymorphisms in the CYP2C9 and VKORC1 genes have produced variants with altered catalytic properties. A total of 212 cardiovascular patients were genotyped for 17 Single Nucleotide Polymorphisms (SNPs) within the CYP2C9 and VKORC1 genes. This study confirmed a genetic association of the CYP2C9*3 and VKORC1 rs10871454, rs8050894, rs9934438, and rs17708472 SNPs with warfarin sensitivity. This study also found an association between CYP2C9 and VKORC1 genetic haplotype blocks and warfarin sensitivity. The initial warfarin dose was significantly related to the CYP2C9*3 polymorphism and the four VKORC1 SNPs (p &lt; 0.001). There were significant associations between rs4086116 SNP and TAT haplotype within CYP2C9 gene and rs17708472 SNP and CCGG haplotype within VKORC1 gene and warfarin responsiveness. However, possessing a VKORC1 variant allele was found to affect the international normalized ratio (INR) outcomes during initiation of warfarin therapy. In contrast, there was a loose association between the CYP2C9 variant and INR measurements. These findings can enhance the current understanding of the great variability in response to warfarin treatment in Arabs

    Genome-Wide CpG Island Methylation Profiles of Cutaneous Skin with and without HPV Infection

    No full text
    HPV infection is one of the most commonly transmitted diseases among the global population. While it can be asymptomatic, non-genital HPV infection often gives rise to cutaneous warts, which are benign growths arising from the epidermal layer of the skin. This study aimed to produce a global analysis of the ways in which cutaneous wart formation affected the CpG island methylome. The Infinium MethylationEPIC BeadChip microarray was utilized in order to quantitatively interrogate CpG island methylation in genomic DNA extracted from 24 paired wart and normal skin samples. Differential methylation analysis was carried out by means of assigning a combined rank score using RnBeads. The 1000 top-ranking CpG islands were then subject to Locus Overlap Analysis (LOLA) for enrichment of genomic ranges, while signaling pathway analysis was carried out on the top 100 differentially methylated CpG islands. Differential methylation analysis illustrated that the most differentially methylated CpG islands in warts lay within the ITGB5, DTNB, RBFOX3, SLC6A9, and C2orf27A genes. In addition, the most enriched genomic region sets in warts were Sheffield&rsquo;s tissue-clustered DNase hypersensitive sites, ENCODE&rsquo;s segmentation and transcription factor binding sites, codex sites, and the epigenome sites from cistrome. Lastly, signaling pathway analysis showed that the GRB2, GNB1, NTRK1, AXIN1, and SKI genes were the most common regulators of the genes associated with the top 100 most differentially methylated CpG islands in warts. Our study shows that HPV-induced cutaneous warts have a clear CpG island methylation profile that sets them apart from normal skin. Such a finding could account for the temporary nature of warts and the capacity for individuals to undergo clinical remission

    Effect of MEF2A and SLC22A3-LPAL2-LPA gene polymorphisms on warfarin sensitivity and responsiveness in Jordanian cardiovascular patients.

    No full text
    AimsThis study aims to investigate the influence of MEF2A and SLC22A3-LPAL2-LPA polymorphisms on cardiovascular disease susceptibility and responsiveness to warfarin medication in Jordanian patients, during the initiation and maintenance phases of treatment.BackgroundsSeveral candidate genes have been reported to be involved in warfarin metabolism and studying such genes may help in finding an accurate way to determine the needed warfarin dose to lower the risk of adverse drug effects, resulting in more safe anticoagulant therapy.MethodsThe study population included 212 cardiovascular patients and 213 healthy controls. Genotyping of MEF2A and SLC22A3-LPAL2-LPA polymorphisms was conducted to examine their effects on warfarin efficiency and cardiovascular disease susceptibility using PCR-based methods.ResultsOne SNP (SLC22A3-LPAL2-LPA rs10455872) has been associated with cardiovascular disease in the Jordanian population, whereas the other SNPs in the MEF2A gene and SLC22A3-LPAL2-LPA gene cluster did not have any significant differences between cardiovascular patients and healthy individuals. Moreover, SLC22A3-LPAL2-LPA rs10455872 was correlated with moderate warfarin sensitivity, the other SNPs examined in the current study have not shown any significant associations with warfarin sensitivity and responsiveness.ConclusionOur data refer to a lack of correlation between the MEF2A polymorphism and the efficacy of warfarin treatment in both phases of treatment, the initiation, and maintenance phases. However, only rs10455872 SNP was associated with sensitivity to warfarin during the initiation phase. Furthermore, rs3125050 has been found to be associated with the international normalized number treatment outcomes in the maintenance phase

    Candidate gene analysis of asthma in population of Arab descent: A case-control study in Jordan

    No full text
    Aim: To evaluate whether SNPs (n = 15) in ten candidate genes (ADRB2, ADH5, ARGI, CRHR1, STIP1, LTA4H, LTC4S, ALOX5, ABCC1 and OATP2B1) are associated with asthma in Jordanian population of Arab descent. Methods: A case–control study included 245 adult asthmatics and 249 controls. Results: Significant genetic association was identified at the rs2236647 (T/C) SNP in STIP1 and risk of asthma (p &lt; 0.001). The C allele and CC genotype of this SNP were significantly higher in asthmatics compared with controls. The rs1141370 SNP (Val34Met) in ADRB2 is not polymorphic in our cohort. Conclusion: The rs2236647 SNP could act as a reliable tool to identify individuals at risk of developing asthma and provision of early intervention in population of Arab descent. </jats:p
    corecore