14 research outputs found

    Liver-specific knockout of arginase-1 leads to a profound phenotype similar to inducible whole body arginase-1 deficiency

    Get PDF
    Arginase-1 (Arg1) converts arginine to urea and ornithine in the distal step of the urea cycle in liver. We previously generated a tamoxifen-inducible Arg1 deficient mouse model (Arg1-Cre) that disrupts Arg1 expression throughout the whole body and leads to lethality ≈ 2 weeks after gene disruption. Here, we evaluate if liver-selective Arg1 loss is sufficient to recapitulate the phenotype observed in global Arg1 knockout mice, as well as to gauge the effectiveness of gene delivery or hepatocyte transplantation to rescue the phenotype. Liver-selective Arg1 deletion was induced by using an adeno-associated viral (AAV)-thyroxine binding globulin (TBG) promoter-Cre recombinase vector administered to Arg1 "floxed" mice; Arg1(fl/fl) ). An AAV vector expressing an Arg1-enhanced green fluorescent protein (Arg1-eGFP) transgene was used for gene delivery, while intrasplenic injection of wild-type (WT) C57BL/6 hepatocytes after partial hepatectomy was used for cell delivery to "rescue" tamoxifen-treated Arg1-Cre mice. The results indicate that liver-selective loss of Arg1 (> 90% deficient) leads to a phenotype resembling the whole body knockout of Arg1 with lethality ≈ 3 weeks after Cre-induced gene disruption. Delivery of Arg1-eGFP AAV rescues more than half of Arg1 global knockout male mice (survival > 4 months) but a significant proportion still succumb to the enzyme deficiency even though liver expression and enzyme activity of the fusion protein reach levels observed in WT animals. Significant Arg1 enzyme activity from engrafted WT hepatocytes into knockout livers can be achieved but not sufficient for rescuing the lethal phenotype. This raises a conundrum relating to liver-specific expression of Arg1. On the one hand, loss of expression in this organ appears to be both necessary and sufficient to explain the lethal phenotype of the genetic disorder in mice. On the other hand, gene and cell-directed therapies suggest that rescue of extra-hepatic Arg1 expression may also be necessary for disease correction. Further studies are needed in order to illuminate the detailed mechanisms for pathogenesis of Arg1-deficiency

    Undernutrition during pregnancy in mice leads to dysfunctional cardiac muscle respiration in adult offspring

    Get PDF
    Summary Statement We show that in utero undernutrition is associated with impaired cardiac muscle energetics and increased plasma short-chain acylcarnitines in adult mice. Findings suggest that in utero undernutrition is associated with maladaptive programming processes that have negative effects on the heart. Synopsis Intrauterine growth restriction is associated with an increased risk of developing obesity, insulin resistance, and cardiovascular disease. However its effect on energetics in heart remains unknown. In this study, we examined respiration in cardiac muscle and liver from adult mice that were undernourished in utero. We report that in utero undernutrition is associated with impaired cardiac muscle energetics, including decreased fatty acid oxidative capacity, decreased maximum oxidative phosphorylation rate, and decreased proton leak respiration. No differences in oxidative characteristics were detected in liver. We also measured plasma acylcarnitine levels and found that short-chain acylcarnitines are increased with in utero undernutrition. Results reveal the negative impact of suboptimal maternal nutrition on adult offspring cardiac energy metabolism, which may have lifelong implications for cardiovascular function and disease risk

    A novel method for quantitation of acylglycines in human dried blood spots by UPLC-tandem mass spectrometry

    No full text
    Background: Several acylcarnitines used as primary markers on dried blood filter papers (DBS) for newborn screening lack specificity and contribute to a higher false positive rate. The analysis of urine acylglycines is useful in the diagnosis of inborn errors of metabolism (IEM) including medium chain acyl-CoA dehydrogenase deficiency (MCADD), isovaleric acidemia, and beta-ketothiolase deficiency (BKTD). Currently, no method for analyzing acylglycines from DBS has been published. Methods: Acylglycines were extracted from two 3.2 mm DBS punches and butylated using Butanol-HCl. Ultra Performance Liquid Chromatography (UPLC-MS/MS) with run time of 10 min permits resolution and quantitation of 15 acylglycines; including several isobaric. Method development was completed. Reference intervals (n = 573) were established for four birth weight groups. Furthermore, samples from patients with a confirmed IEM (n = 11), and false positive screens (n = 78) were analyzed to validate the interpretation obtained from the newly established reference intervals. Results: Calibration curves were linear from 0.005 to 25.0 μM. Ion suppression was evaluated as minimal (2 to 10%). Samples from known patients were used to validate the reference intervals. For C5OH-related disorders, tiglylglycine (TG), TG/acetylglycine (AG) ratio, 3methylcrotonylglycine (3MCG) and 3MCG/AG ratio increased specificity. Propionylglycine (PG) and PG/acetylglycine ratio were two discriminatory markers in the investigation of C3-related disorders. Hexanoylglycine (HG), octanoylglycine (OG), suberylglycine (SG), and the ratios HG/AG, OC/AG and SG/AG were excellent markers of MCADD deficiency. Conclusion: This method shows potential application as a second tier screen in order to reduce the false positive rate for a number of IEM targeted by newborn screening

    Analysis of tricarboxylic acid cycle intermediates in dried blood spots by ultraperformance liquid chromatography-tandem mass spectrometry

    No full text
    Background: We developed a novel method for measuring the concentrations of tricarboxylic acid (TCA) cycle intermediates in dried blood spots (DBS) using liquid chromatography-tandem mass spectrometry (LC-MS/ MS). Analytes were derivatized before analysis using 4-[2-(N,N-dimethylamino) ethylaminosulfonyl]-7-(2-aminoethylamino)-2,1,3-benzoxa-diazole (DAABD-AE), a reagent that imparts powerful chromatographic and mass spectrometric properties onto carboxyl group-containing analytes. Methodology: Extraction and derivatization of TCA cycle intermediates were achieved in a single step by incubating a 3.2 mm circle of the DBS samples with DAABD-AE for 1 hour at 65 C. From the resultant mixture, 1.0 µl was injected into the LC-MS/MS. Results: Total analytical run time to separate target analytes from other interfering components in the sample was 8 minutes. The peaks corresponding to malic, fumaric, citric, succinic, and 2-ketoglutaric acid appeared at 3.55, 3.62, 3.64, 3.67, and 3.68 minutes, respectively. The method was adequately reproducible with a coefficient of variation for intraday (n = 15) and inter-day (n = 13) studies of 5.2%-18.4%. Reference intervals in DBS from controls (n = 125) were as follow (µmol/l): citric (36.6-126.4), 2-ketoglutaric (9.1-42.1), succinic (1.2-2.4), fumaric (2.4-9.0), and malic acid (15.9-39.3). Compared to controls, the levels of citric, succinic, and malic acids were statistically different in patients (n = 7) with a p-value of< 0.05. No statistically significant difference was detected in concentrations of 2-ketoglutaric and fumaric acids. Conclusion: We describe a simple, quick, and sensitive method to measure TCA cycle intermediates in DBS samples. That TCA cycle plays a central role in cellular metabolism; this method should be useful in studying these metabolites in health and disease. [JBCGenetics 2019; 2(2.000): 93-98

    Role of Functional Biomarkers to Identify Early Vitamin B12 Deficiency in Patients with Sleeve Gastrectomy: A Cross-Sectional Study

    No full text
    Background and objectives: Although laparoscopic sleeve gastrectomy (LSG) is effective for obesity management, postoperative vitamin B12 (B12) deficiency is of major concern. In this cross-sectional study, we assessed the levels of B12 and its related functional biomarkers, namely, total homocysteine (tHcy), methylmalonic acid (MMA), folate, methylcitric acid (MCA), and hemoglobin (Hb), in one-year postoperative LSG patients and matched controls. Materials and Methods: Plasma B12, tHcy, MMA, folate, and MCA were measured in matched controls (n = 66) and patients (n = 71) using validated liquid chromatography-tandem mass spectrometry techniques and protocols in the United Arab Emirates (UAE). Results: The median B12 concentration in patients (177 pmol/L) was significantly lower (p < 0.001) than in the controls (334.7 pmol/L). The tHcy and MMA levels were significantly increased (p < 0.001 and p = 0.011, respectively) and folate levels were significantly decreased (p = 0.001) in the LSG patients compared to the controls. Interestingly, no significant difference in MCA levels were observed between the two groups. The levels of tHcy and MMA were concomitantly increased with the decreased folate levels in postoperative LSG patients when compared with the controls. The Hb levels were significantly lower in males and females in the patient group compared with those in the control group, respectively (p = 0.005 and p = 0.043). Conclusions: This is the first report of serum levels of B12 and its functional biomarkers in postoperative LSG patients among a local population from the UAE. Our findings revealed significant alterations of the B12 biomarkers, total B12, MMA, and tHcy in one-year postoperative LSG patients

    Targeted Metabolomic Profiling of Total Fatty Acids in Human Plasma by Liquid Chromatography-Tandem Mass Spectrometry

    No full text
    This article reports a targeted metabolomic method for total plasma fatty acids (FAs) of clinical or nutritional relevance. Thirty-six saturated, unsaturated, or branched-chain FAs with a chain length of C8-C28 were quantified using reversed-phase liquid chromatography-tandem mass spectrometry. FAs in plasma (10 μL) were acid-hydrolyzed, extracted, and derivatized with DAABD-AE (4-[2-(N,N-Dimethylamino)ethylaminosulfonyl]-7-(2-aminoethylamino)-2,1,3-benzoxadiazole) at 60 °C for 1 h. Derivatization resulted in a staggering nine orders of magnitude higher sensitivity compared to underivatized analytes. FAs were measured by multiple-reaction monitoring using stable isotope internal standards. With physiological and pathological analyte levels in mind, linearity was established using spiked plasma. Intra-day (n = 15) and inter-day (n = 20) imprecisions expressed as variation coefficient were ≤10.2% with recovery ranging between 94.5–106.4%. Limits of detection and limit of quantitation ranged between 4.2–14.0 and 15.1–51.3 pmol per injection, respectively. Age-stratified reference intervals were established in four categories: <1 month, 1–12 month, 1–18 year, and >18 year. This method was assessed using samples from patients with disorders affecting FAs metabolism. For the first time, C28:0 and C28:0/C22:0 ratio were evaluated as novel disease biomarkers. This method can potentially be utilized in diagnosing patients with inborn errors of metabolism, chronic disease risk estimation, or nutritional applications

    Metabolomic Profiling of Lipids and Fatty Acids: 3 Years Postoperative Laparoscopic Sleeve Gastrectomy

    No full text
    Visceral obesity is common in the United Arab Emirates and worldwide. Although laparoscopic sleeve gastrectomy (LSG) leads to effective and sustainable weight loss, its long-term beneficial impact on other risk factors, including blood lipid and fatty acid (FA) profiles, remains unknown. These two profiles were assessed in patients 3 years after undergoing LSG and in LSG candidates (controls). Lipid profiles were measured using the Cobas e411 modular analyzer, and 35 FAs were identified. The age and body mass index were 36.55 ± 8.65 years and 31.49 ± 6.43 kg/m2 in the LSG group and 35.44 ± 9.51 years and 32.29 ± 5.38 kg/m2 in the control group, respectively. The overall lipid profile was more favorable in the LSG group than in the control group. Total saturated, monounsaturated, and polyunsaturated FAs were similar between the groups, but total medium-chain FAs were more abundant in the LSG group. In endogenous FA synthesis, the estimated activity of C16Δ9 desaturase and Δ5 desaturase decreased, whereas that of elongase increased in the LSG group compared with that in the control group. The benefits of LSG on blood lipid and FA profiles in patients with 3-year LSG may be limited. Hence, lifestyle interventions combined with a long-term and strict regular follow-up regime may be warranted for patients undergoing LSG

    Temporal Signal Pattern Recognition in Mass Spectrometry: A Method for Rapid Identification and Accurate Quantification of Biomarkers for Inborn Errors of Metabolism with Quality Assurance

    No full text
    Mass spectrometry (MS)-based metabolomic initiatives that use conventional separation techniques are limited by low sample throughput and complicated data processing that contribute to false discoveries. Herein, we introduce a new strategy for unambiguous identification and accurate quantification of biomarkers for inborn errors of metabolism (IEM) from dried blood spots (DBS) with quality assurance. A multiplexed separation platform based on multisegment injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS) was developed to provide comparable sample throughput to flow injection analysis-tandem MS (FIA-MS/MS) but with greater selectivity as required for confirmatory testing and discovery-based metabolite profiling of volume-restricted biospecimens. Mass spectral information is encoded temporally within a separation by serial injection of three or more sample pairs, each having a unique dilution pattern, alongside a quality control (QC) that serves as a reference in every run to facilitate between-sample comparisons and/or batch correction due to system drift. Optimization of whole blood extraction conditions on DBS filter paper cut-outs was first achieved to maximize recovery of a wide range of polar metabolites from DBS extracts. An interlaboratory comparison study was also conducted using a proficiency test and retrospective neonatal DBS that demonstrated good agreement between MSI-CE-MS and validated FIA-MS/MS methods within an accredited facility. Our work demonstrated accurate identification of various IEM based on reliable measurement of a panel of primary or secondary biomarkers above an upper cutoff concentration limit for presumptive screen-positive cases without stable isotope-labeled reagents. Additionally, nontargeted metabolite profiling by MSI-CE-MS with temporal signal pattern recognition revealed new biomarkers for early detection of galactosemia, such as <i>N</i>-galactated amino acids, that are a novel class of pathognomonic marker due to galactose stress in affected neonates

    Diagnosis of Glutaric Aciduria Type 1 by Measuring 3-hydroxyglutaric Acid in Dried Urine Spots by Liquid Chromatography Tandem Mass Spectrometry

    No full text
    Accumulation of glutaric acid (GA) and 3-hydroxyglutaric acid (3HGA) in body fluids is the biochemical hallmark of type 1 glutaric aciduria (GA1), a disorder characterized by acute striatal degeneration and a subsequent dystonia. To date, methods for quantification of 3HGA are mainly based on stable isotope dilution gas chromatography mass spectrometry (GC-MS) and require extensive sample preparation. Here we describe a simple liquid chromatography tandem MS (LC-MS/MS) method to quantify this important metabolite in dried urine spots (DUS). This method is based on derivatization with 4-[2-(N,N-dimethylamino)ethylaminosulfonyl]-7-(2-aminoethylamino)-2,1,3-benzoxadiazole (DAABD-AE). Derivatization was adopted to improve the chromatographic and mass spectrometric properties of the studied analytes. Derivatization was performed directly on a 3.2-mm disc of DUS as a sample without extraction. Sample mixture was heated at 60°C for 45 min, and 5 μl of the reaction solution was analyzed by LC-MS/MS. Reference ranges obtained were in excellent agreement with the literature. The method was applied retrospectively for the analysis of DUS samples from established low- and high-excreter GA1 patients as well as controls (n = 100). Comparison of results obtained versus those obtained by GC-MS was satisfactory (n = 14). In populations with a high risk of GA1, this approach will be useful as a primary screening method for high- or low-excreter variants. In these populations, however, DUS analysis should not be implemented before completing a parallel comparative study with the standard screening method (i.e., molecular testing). In addition, follow-up DUS GA and 3HGA testing of babies with elevated dried blood spot C5DC acylcarnitines will be useful as a first-tier diagnostic test, thus reducing the number of cases requiring enzymatic and molecular analyses to establish or refute the diagnosis of GA1

    Disturbed phospholipid metabolism in serine biosynthesis defects revealed by metabolomic profiling

    No full text
    Serine biosynthesis defects are autosomal recessive metabolic disorders resulting from the deficiency of any of the three enzymes involved in de novo serine biosynthesis, specifically phosphoglycerate dehydrogenase (PGDH), phosphoserine aminotransferase (PSAT), and phosphoserine phosphatase (PSP). In this study, we performed metabolomic profiling on 4 children with serine biosynthesis defects; 3 with PGDH deficiency and 1 with PSAT deficiency. The evaluations were performed at baseline and with serine and glycine supplementation. Metabolomic profiling performed at baseline showed low phospholipid species, including glycerophosphocholine, glycerophosphoethanolamine, and sphingomyelin. All children had low serine and glycine as expected. Low glycerophosphocholine compounds were found in 4 children, low glycerophosphoethanolamine compounds in 3 children, and low sphingomyelin species in 2 children. Metabolic profiling with serine and glycine supplementation showed normalization of most of the low phospholipid compounds in the 4 children. Phospholipids are the major component of plasma and intracellular membranes, and phosphatidylcholine is the most abundant phospholipid of all mammalian cell types and subcellular organelles. Phosphatidylcholine is of particular importance for the nervous system, where it is essential for neuronal differentiation. The observed low phosphatidylcholine species in children with serine biosynthesis defects that improved after serine supplementation, supports the role of serine as a significant precursor for phosphatidylcholine. The vital role that phosphatidylcholine has during neuronal differentiation and the pronounced neurological manifestations in serine biosynthesis defects suggest that phosphatidylcholine deficiency occurring secondary to serine deficiency may have a significant contribution to the development of the neurological manifestations in individuals with serine biosynthesis defects
    corecore