18 research outputs found

    Salicylic acid and hydrogen peroxide accumulation in relation to hydrolyte leakage in barley plants challenged with Cochliobolus sativus

    Get PDF
    Spot blotch (SB) caused by the hemibiotrophic fungal pathogen Cochliobolus sativus is a destructive disease of barley worldwide. To better understand the mechanisms of resistance to this disease, the involvements of salicylic acid (SA), hydrogen peroxide (H2O2) and ion fluxes during the interaction between resistant and susceptible barley seedlings and C. sativus were investigated. Early SA accumulation in leaf tissues was accompanied with an increase in H2O2 concentration in both compatible and incompatible interactions. The resistant cultivar constitutively contained higher levels of H2O2 and SA, as well as during the 72 h as compared with the un-infected control (0 h). However, levels increased rapidly upon infection in both cultivars. Moreover, a markedly greater increase in ion fluxes from the compatible material compared with the incompatible one was observed. Results suggest that SA and H2O2 accumulation are important during both compatible and incompatible barley- C. sativus interactions

    Salicylic acid pathway changes in barley plants challenged with either a biotrophic or a necrotrophic pathogen

    Get PDF
    The biotrophic Blumeria graminis (Bg) and the necrotrophic Cochliobolus sativus; (Cs) are economically important fungal pathogens of barley globally. To better understand barley mechanisms to resist these pathogens, changes in salicylic acid (SA) and its responsive genes particularly the pathogenesis related PR1, PR2, PR3 and PR5 were evaluated using qRT-PCR across four time points post infection. Data showed that SA contents significantly increased (P = 0.001) in infected plants of both resistant and susceptible genotypes 24 h post inoculation in comparison with non-infected controls. In addition, time-course tests revealed a notable contradiction in the defense-related genes expression patterns between barley and Bg and Cs interactions, showing that expression patterns of the same defense-associated genes were altered in adaptation to different pathogens. PR1 and PR2 genes were highlyactivated inresistant plants infected with the necrotrophic pathogen Cs rather than of the biotrophic one. The uniformity in barley defense response mechanisms could be in convention with the well-accepted notion that these responses are high intense in the resistant genotype. Our work provides useful information on the expected role of SA pathways in barley towards biotrophic and necroptrophic pathogens with different lifestyles

    Changes in PR2 and PAL Patterns in Barley Challenged with Leaf Stripe (Pyrenophora graminea) and Powdery Mildew (Blumeria graminis) Diseases

    Get PDF
    The seed-borne (Pyrenophora graminea; Pg) and foliar (Blumeria graminis; Bg) are two economically important fungal pathogens of barley worldwide. Barley plant resistance genes, as the pathogenesis related proteins play an important role in defense mechanisms. This study aimed to monitor the expression of PR2 and PAL pathogenesis related genes during compatible/incompatible barley interaction with Pg and Bg at different time points of disease development using the Quantitative Real-time PCR technique (qRT-PCR). Comparison of data showed that PR2 and PAL were significantly over expressed in infected resistant and susceptible plants as against their lower expression in controls,. Upregulation of these defense-related genes during Pg and Bg infections was companied with a slow development of disease symptoms at the time course in the resistant genotype. qRT-PCR analysis revealed higher gene expression in resistant barley plants inoculated with Pg as compared with Bg, with a maximum expression for PR2 (13.8 and 5.06-fold) and PAL (14.8 and 4.51-fold) respectively, at the latest stage of each disease development. It was also noteworthy that PR2 and PAL genes, had higher constitutive expression and faster induction for the both pathogens in the resistant genotype as compared with the susceptible one. Obtained results suggest that both genes, PR2 and PAL, positively regulate Pg- and Bg-resistance in barley plants during disease progress. These expression patterns can provide useful insights to better understanding of the barley–fungus interactions with different fungal lifestyles

    Cooperative functioning of salicylic acid and phenylalanine ammonia lyase in barley plant challenged with spot blotch and powdery mildew diseases

    Get PDF
    Salicylic acid (SA) and phenylalanine ammonia-lyase (PAL) have been suggested as important signals during plant resistance towards several fungal pathogens. In this work, to better understand the defense responses initiated by resistant and susceptible barley genotypes challenged with a necrotrophic (Cochliobolus sativus; Cs) and a biotrophic (Blumeria graminis; Bg) pathogens, the relative contributions of SA and PAL were investigated at early time points of infection. SA signaling was activated in both genotypes 24 hours post infection (hpi) as compared with the non-inoculated plants. However, with or without pathogen pretreatment, SA significantly increased (P = 0.001) in the resistant genotype that contained three-folds of total SA in comparison with the susceptible one for Bg. Reverse transcription-polymerase chain reaction (RTPCR) analysis revealed that PAL expression increases in the resistant and susceptible genotypes over the inoculation time points, with the maximum expression observed 48 hpi. PAL expression was paralleled by an increase in SA content in leaves as shown by the test coincidence (F3, 32 = 1.09, P = 0.49 for Cs and F3, 32 = 1.03, P = 0.48 for Bg). Results showed that the cooperatively function of SA and PAL in barley responses to both Cs and Bg appeared to be dependent on the plant genotype, and that SA signaling and PAL play a role in barley interactions with these both pathogens. This study might increase our understanding for a deeper molecular research on barley defense responses against pathogens with different lifestyles

    Pathogenesis-related genes responses in barley plants challenged with pathogenic fungi with different lifestyles

    No full text
    Barley plants can be infected by a variety of fungal pathogens with diferent lifestyles. The biotrophic Blumeria graminis, necrotrophic Pyrenopora teres, and hemibiotrophic Cochliobolus sativus are economically important pathogens of barley worldwide. Currently, the mechanisms underlying resistance to these diseases are still largely unknown. In the current study, expression patterns of some well-known pathogenesis-related (PR) genes were monitored at early points of infection in resistant and susceptible barley genotypes using quantitative PCR method. Data showed earlier and higher accumulation of PR transcripts in the resistant genotype as compared with the susceptible one, and the expression patterns of the same defense-associated genes were altered in adaptation to each pathogen. The most outstanding diferences were observed in PR1 and PR5 genes that were highly activated in resistant plants infected with the hemibiotrophic pathogen rather than the biotrophic and necrotrophic ones. The barley defense response mechanisms against these pathogens could be in agreement with the well-accepted concept that these events are intense in the resistant cultivar. This work might provide useful information for a deeper molecular research on barley defense responses toward pathogens with diferent lifestyles

    Identification of AFLP markers associated with spot blotch resistance through single marker analysis in barley (Hordeum vulgare L.)

    No full text
    Spot blotch (SB) caused by the fungus Cochliobolus sativus, is an economically important disease on barley worldwide. Molecular analysis of SB resistance using quantitative trait locus (QTL) analysis can improve the efficiency of the breeding process. In the current work, and to accelerate development of SB-resistant barley cultivars, AFLP markers linked to SB resistance have been identified by using F2 recombinant inbred lines derived from a cross between the resistant barley cv. Banteng and the susceptible cv. WI2291. Single marker analysis (SMA) based on t-test revealed that out of 82 AFLP markers; five AFLP markers AAC × CTG (700 bp), ACT × CAT (600 bp), ACT × CAT (400 bp), ACT × CTG (550 bp) and AGG × CAG (490 bp) were identified. The data showed that SMA-based t-test could be a useful analysis for dominant markers such AFLP in breeding programs, and that the AFLP detected markers can be employed in genomics-assisted breeding for selection of SB-resistant barley genotypes

    RIN13 is a positive regulator of the plant disease resistance protein RPM1

    No full text
    The RPM1 protein confers resistance to Pseudomonas syringae pv tomato DC3000 expressing either of the Type III effector proteins AvrRpm1 or AvrB. Here, we describe the isolation and functional characterization of RPM1 Interacting Protein 13 (RIN13), a resistance protein interactor shown to positively enhance resistance function. Ectopic expression of RIN13 (RIN13s) enhanced bacterial restriction mechanisms but paradoxically abolished the normally rapid hypersensitive response (HR) controlled by RPM1. In contrast with wild-type plants, leaves expressing RIN13s did not undergo electrolyte leakage or accumulate H2O2 after bacterial delivery of AvrRpm1. Overexpression of RIN13 also altered the transcription profile observed during a normal HR. By contrast, RIN13 knockout plants had the same ion leakage signatures and HR timing of wild-type plants in response to DC3000(avrRpm1) but failed to suppress bacterial growth. The modified phenotypes seen in the RIN13s/as plants were specific to recognition of AvrRpm1 or AvrB, and wild-type responses were observed after challenge with other incompatible pathogens or the virulent DC3000 isolate. Our results suggest that cell death is not necessary to confer resistance, and engineering enhanced resistance without activation of programmed cell death is a real possibility
    corecore