2 research outputs found
Transcriptional regulation of the proto-oncogene Zfp521 by SPI1 (PU.1) and HOXC13
The mouse zinc‐finger gene Zfp521 (also known as ecotropic viral insertion site 3; Evi3; and ZNF521 in humans) has been identified as a B‐cell proto‐oncogene, causing leukemia in mice following retroviral insertions in its promoter region that drive Zfp521 over‐expression. Furthermore, ZNF521 is expressed in human hematopoietic cells, and translocations between ZNF521 and PAX5 are associated with pediatric acute lymphoblastic leukemia. However, the regulatory factors that control Zfp521 expression directly have not been characterized. Here we demonstrate that the transcription factors SPI1 (PU.1) and HOXC13 synergistically regulate Zfp521 expression, and identify the regions of the Zfp521 promoter required for this transcriptional activity. We also show that SPI1 and HOXC13 activate Zfp521 in a dose‐dependent manner. Our data support a role for this regulatory mechanism in vivo, as transgenic mice over‐expressing Hoxc13 in the fetal liver show a strong correlation between Hoxc13 expression levels and Zfp521 expression. Overall these experiments provide insights into the regulation of Zfp521 expression in a nononcogenic context. The identification of transcription factors capable of activating Zfp521 provides a foundation for further investigation of the regulatory mechanisms involved in ZFP521‐driven cell differentiation processes and diseases linked to Zfp521 mis‐expression