5 research outputs found

    Induction of apoptosis in cancer cells by NiZn ferrite nanoparticles through mitochondrial cytochrome C release

    Get PDF
    The long-term objective of the present study was to determine the ability of NiZn ferrite nanoparticles to kill cancer cells. NiZn ferrite nanoparticle suspensions were found to have an average hydrodynamic diameter, polydispersity index, and zeta potential of 254.2±29.8nm, 0.524 ±0.013, and -60±14mV, respectively. We showed that NiZn ferrite nanoparticles had selective toxicity towards MCF-7, HepG2, and HT29cells, with a lesser effect on normal MCF 10A cells. The quantity of Bcl-2, Bax, p53, and cytochrome C in the cell lines mentioned above was determined by colorimetric methods in order to clarify the mechanism of action of NiZn ferrite nanoparticles in the killing of cancer cells. Our results indicate that NiZn ferrite nanoparticles promote apoptosis in cancer cells via caspase-3 and caspase-9, downregulation of Bcl-2, and upregulation of Bax and p53, with cytochrome C translocation. There was a concomitant collapse of the mitochondrial membrane potential in these cancer cells when treated with NiZn ferrite nanoparticles. This study shows that NiZn ferrite nanoparticles induce glutathione depletion in cancer cells, which results in increased production of reactive oxygen species and eventually, death of cancer cells

    The effect of precursor concentration on the particle size, crystal size, and optical energy gap of CexSn1â’xO2 nanofabrication

    Get PDF
    In the present work, a thermal treatment technique is applied for the synthesis of CexSn1−xO2 nanoparticles. Using this method has developed understanding of how lower and higher precursor values affect the morphology, structure, and optical properties of CexSn1−xO2 nanoparticles. CexSn1−xO2 nanoparticle synthesis involves a reaction between cerium and tin sources, namely, cerium nitrate hexahydrate and tin (II) chloride dihydrate, respectively, and the capping agent, polyvinylpyrrolidone (PVP). The findings indicate that lower x values yield smaller particle size with a higher energy band gap, while higher x values yield a larger particle size with a smaller energy band gap. Thus, products with lower x values may be suitable for antibacterial activity applications as smaller particles can diffuse through the cell wall faster, while products with higher x values may be suitable for solar cell energy applications as more electrons can be generated at larger particle sizes. The synthesized samples were profiled via a number of methods, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). As revealed by the XRD pattern analysis, the CexSn1−xO2 nanoparticles formed after calcination reflect the cubic fluorite structure and cassiterite-type tetragonal structure of CexSn1−xO2 nanoparticles. Meanwhile, using FT-IR analysis, Ce-O and Sn-O were confirmed as the primary bonds of ready CexSn1−xO2 nanoparticle samples, whilst TEM analysis highlighted that the average particle size was in the range 6−21 nm as the precursor concentration (Ce(NO3)3·6H2O) increased from 0.00 to 1.00. Moreover, the diffuse UV-visible reflectance spectra used to determine the optical band gap based on the Kubelka–Munk equation showed that an increase in x value has caused a decrease in the energy band gap and vice versa

    Optical Properties and Amplified Spontaneous Emission of Novel MDMO-PPV/C500 Hybrid

    No full text
    The influence of the solvent nature on optical properties of poly[2-methoxy-5-3,7-dimethyloctyloxy-1,4-phenylenevinylene] (MDMO-PPV)/Coumarine 500 (C500) have been investigated. In addition, the amplified spontaneous emission (ASE) from MDMO-PPV and efficient energy transfer between the MDMO-PPV and C500 has been verified. The MDMO-PPV was dissolved in aromatic and nonaromatic solvents, while the solution blending method was employed to prepare the MDMO-PPV:C500 hybrid. The quantum yield of the MDMO-PPV was found to increase with the reduction of a few factors such as polarity index of the solvent, absorption cross section (σa), emission cross section (σe), and extinction coefficient (εmax). The fluorescence spectra of the MDMO-PPV appears from two vibronic band transitions (0-0, 0-1) and the ASE occurs at 0-1 transition, which was verified by the ASE from MDMO-PPV. The MDMO-PPV in toluene exhibited the best ASE efficiency due to its high quantum yield compared with other solvents. Strong overlap between the absorption spectrum of MDMO-PPV and emission spectrum of C500 confirmed the efficient energy transfer between them. Moreover, the ASE for energy transfer of the MDMO-PPV:C500 hybrid was proved

    Sulfur Nanoparticle-Decorated Nickel Cobalt Sulfide Hetero-Nanostructures with Enhanced Energy Storage for High-Performance Supercapacitors

    No full text
    Transition-metal sulfides exaggerate higher theoretical capacities and were considered a type of prospective nanomaterials for energy storage; their inherent weaker conductivities and lower electrochemical active sites limited the commercial applications of the electrodes. The sheet-like nickel cobalt sulfide nanoparticles with richer sulfur vacancies were fabricated by a two-step hydrothermal technique. The sheet-like nanoparticles self-combination by ultrathin nanoparticles brought active electrodes entirely contacted with the electrolytes, benefiting ion diffusion and charges/discharges. Nevertheless, defect engineers of sulfur vacancy at the atomic level raise the intrinsic conductivities and improve the active sites for energy storage functions. As a result, the gained sulfur-deficient NiCo2S4 nanosheets consist of good specific capacitances of 971 F g−1 at 2 A g−1 and an excellent cycle span, retaining 88.7% of the initial capacitance over 3500 cyclings. Moreover, the values of capacitance results exhibited that the fulfilling characteristic of the sample was a combination of the hydrothermal procedure and the surface capacitances behavior. This novel investigation proposes a new perspective to importantly improve the electrochemical performances of the electrode by the absolute engineering of defects and morphologies in the supercapacitor field

    Improving Photophysical Properties of White Emitting Ternary Conjugated Polymer Blend Thin Film via Additions of TiO2 Nanoparticles

    No full text
    The effect of TiO2 nanoparticles on the photophysical properties of ternary conjugated polymer (CP) blends of poly(9,9-dioctylfluorene-2,7-diyl) (PFO), poly 9,9-dioctylfluorene-alt-benzothiadiazole (F8BT) and poly(2-methoxy-5(2-ethylhexyl)-1,4 -phenylenevinylene (MEH-PPV) thin films was investigated. This ternary blend used a fixed amount of PFO as the donor with MEH-PPV and F8BT in various ratios as the acceptors. The solution-blending method and the spin-coating technique were used to prepare the blends and the thin films, respectively. Through efficient Förster Resonance Energy Transfer (FRET), the desired white emission was achieved with PFO/0.3 wt.% F8BT/0.5 wt.% MEH-PPV ternary blend thin film. Additions of nanoparticles up to 10 wt.% dramatically intensified the white emission which then dimmed at higher contents due to agglomerations. The current density–voltage characteristics of the nanocomposite thin films exhibited dependency on the content and distributions of the nanoparticles. Finally, a possible underlying mechanism for the intensification of emission is proposed
    corecore