2 research outputs found

    Evaluation of single reservoir performance for flood risk reduction using a developed simulation model: case study of Makhoul reservoir

    Get PDF
    The objectives of this study were firstly, to develop a simulation model (SM) for a single reservoir to identify the standard operating policy (SOP) of a reservoir based on a monthly operating period, and secondly, to evaluate the performance of the proposed Makhoul reservoir using a Developed Simulation Model (DSM) in reducing flood risk. This reservoir is located on the River Tigris, approximately 180 km upstream of Baghdad, Iraq. The performance of the reservoir in reducing flood risk was evaluated using two designs and records of flood waves gathered over two years. The first design was the present one, while the second was developed by increasing the operational storage to its maximum, based on the digital maps of the region. The flows downstream of the reservoir were compared, with and without the reservoir in the two years in question. Four parameters resulting from the two designs were compared: storage, surface area, elevation and power. The results suggested that the reservoir would be ineffective in reducing flood risk, but it would have the ability to provide hydroelectric power using the two designs, with the new one showing better ability at doing this. The reservoir can also serve purposes such as irrigation, fish wealth development and recreation. This DSM proved its effectiveness in evaluating the performance of the single storage system used for reservoirs

    Enhanced genetic algorithm optimization model for a single reservoir operation based on hydropower generation: case study of Mosul reservoir, northern Iraq

    No full text
    Achievement of the optimal hydropower generation from operation of water reservoirs, is a complex problems. The purpose of this study was to formulate and improve an approach of a genetic algorithm optimization model (GAOM) in order to increase the maximization of annual hydropower generation for a single reservoir. For this purpose, two simulation algorithms were drafted and applied independently in that GAOM during 20 scenarios (years) for operation of Mosul reservoir, northern Iraq. The first algorithm was based on the traditional simulation of reservoir operation, whilst the second algorithm (Salg) enhanced the GAOM by changing the population values of GA through a new simulation process of reservoir operation. The performances of these two algorithms were evaluated through the comparison of their optimal values of annual hydropower generation during the 20 scenarios of operating. The GAOM achieved an increase in hydropower generation in 17 scenarios using these two algorithms, with the Salg being superior in all scenarios. All of these were done prior adding the evaporation (Ev) and precipitation (Pr) to the water balance equation. Next, the GAOM using the Salg was applied by taking into consideration the volumes of these two parameters. In this case, the optimal values obtained from the GAOM were compared, firstly with their counterpart that found using the same algorithm without taking into consideration of Ev and Pr, secondly with the observed values. The first comparison showed that the optimal values obtained in this case decreased in all scenarios, whilst maintaining the good results compared with the observed in the second comparison. The results proved the effectiveness of the Salg in increasing the hydropower generation through the enhanced approach of the GAOM. In addition, the results indicated to the importance of taking into account the Ev and Pr in the modelling of reservoirs operation
    corecore