22 research outputs found

    Development of a desktop STM using ballistic electron emission microscopy and spectroscopy to study Ni-SiC Schottky contacts.

    Get PDF
    Ballistic electron emission microscopy and spectroscopy (BEEM/BEES) have been employed by developing a basic desktop STM in air in order to study Ni-SiC samples. The electronic properties of Ni contacts to SiC are highly dependent on their manufacturing process and this study generated suitably thin contacts for BEEM measurements that were Schottky in nature and made under UHV evaporation conditions. The sample also required an Ohmic contact to allow the detection of the BEEM current and these were formed using an Edwards evaporator. BEEM is a three terminal measurement based upon the generation of pico amp currents and as a result amplifier circuits with I/V conversion were used to amplify the BEEM current to give a voltage in the range of ±10V for input into an auxiliary channel of the basic STM control unit. Also, a sample holder (110 mm x 210 mm) was modified which allowed a 3rd contact to the sample within the usual STM set-up.During this work, simultaneous STM and BEEM images have been recorded at various tunnelling currents and bias voltages. These images show distinct differences and the interface behaviour appears modified by varying electrical properties between the Ni and SiC which are resolved spatially on the nanoscale within the BEEM image. Furthermore, measurements were made to determine the Schottky barrier height values using BEES in different locations by observing the ballistic current as a function of voltage. It was found that the Schottky barrier varied between 1.48 eV to 2.35 eVdepending on the region or features analysed. The interaction at room temperature between Ni and SiC is discussed in light of these measurements and compared to current literature to resolve the origin of the observed Schottky barrier height variations

    Controlling of crystal size and optical band gap of CdO nanopowder semiconductors by low and high Fe contents

    Get PDF
    The CdO:Fe nanopowder semiconductors were synthesized by the sol–gel calcination for the first time. The structural properties of Fe doped CdO samples were analyzed by AFM and XRD measurements. XRD patterns of the pure and Fe-doped CdO samples reveal that the pure and Fe doped CdO nanopowders are polycrystalline of cubic CdO structure. The crystallite size of undoped and Fe-doped CdO samples is changed unsystematically with a regular increase of Fe content. The optical band gaps of Fe doped CdO samples were determined for the first time by diffused reflectance measurements. The optical band gap of the samples is increased with the increase of Fe dopant inside the host matrix (CdO) up to 15 % followed by a decrease in its value. It is evaluated that Fe doped CdO nanopowder semiconductors can be producted by sol–gel calcination for advanced technological application

    Correlation between Electrical Conductivity and Microwave Shielding Effectiveness of Natural Rubber Based Composites, Containing Different Hybrid Fillers Obtained by Impregnation Technology

    Get PDF
    Abstract The paper presents the synthesis and characterization of carbon black/silicone dioxide hybrid fillers obtained by an impregnation technology. The electromagnetic interference shielding effectiveness of the composites filled with carbon black/silicone dioxide hybrid fillers was measured in wide frequency range of 1 -12 GHz. The dc and ac electrical conductivity of composites also have been investigated. The relationship between electrical (dc and ac) conductivity and shielding effectiveness was analyzed. A positive correlation was found between the absorptive shielding effectiveness and ac conductivity for composites comprising conductive carbon black/silica filler, when the filler loading is above the percolation threshold

    The Effects of Pt-Doped TiO2 Nanoparticles and Thickness of Semiconducting Layers at Photoanode in the Improved Performance of Dye-Sensitized Solar Cells

    No full text
    This work synthesized Pt-doped dye-sensitized solar cells (DSSC) with different molar ratios and thicknesses. The materials were revealed fully through X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). The photovoltaic properties of the sample were studied by UV-visible spectroscopy, electrochemical impedance spectroscopy (EIS), and IPEC (incident photon-to-current conversion efficiency) techniques. EIS analysis established the decrease in series resistance at the electrolyte interface. It could be one of the reasons for the increase in electron transfer rate and decrease in the recombination process at the interface. Statistical data obtained from optical and electrical investigations revealed that the electrical power-output efficiency of DSSC was 14.25%. It was found that a high ratio of Pt doping and thinner thickness can promote cell performance, owing to the reduction of series resistance, lower bandgap, and high dye adsorption. Doping TiO2 with Pt reduced its energy bandgap and introduces intermediate energy levels inside TiO2 to facilitate the transition of electrons at low excitation energies. The absorbance of the samples 0.15 M Pt and 0.25 M Pt showed improvement in the wavelength ranging from 200 to 800 nm by Pt doping

    Properties of Natural Rubber-Based Composites Containing Fullerene

    No full text
    In this study the influence of fullerenes in concentrations from 0.5 to 1.5 phr on both the vulcanization characteristics of the compounds and physicomechanical, dynamic, and dielectric properties and thermal aging resistance of nanocomposites on the basis of natural rubber has been investigated. The effect of the filler dispersion in the elastomeric matrix has been also investigated. Neat fullerene and the composites comprising it have been studied and characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM)

    Dielectric and Microwave Properties of Siloxane Rubber/Carbon Black Nanocomposites and Their Correlation

    Get PDF
    In this paper, the dielectric and microwave properties of carbon black/siloxane rubber-based nanocomposites have been investigated in the frequency range from 1 GHz till 12 GHz according to the content of carbon black and the frequency. It has been established that the increasing frequency and filler content lead to an increase in the relative permittivity and tangent of dielectric loss angle. At higher filler content, the effects become more pronounced, especially those upon dielectric loss. It has been also established that there are two well-distinguished areas in all dependences of microwave properties on frequency and filler content increasing. The first is between 1 and 8 GHz wherein the reflection and attenuation of microwaves do not change considerably with frequency and filler content alternation while shielding effectiveness worsens. The second area is between 8 and 12 GHz wherein the reflection and attenuation of microwaves increase drastically with the increasing frequency and filler content. Shielding effectiveness improves, too. It has been established that in all cases the degree of correlation between dielectric and microwave properties evaluated on the basis of the coefficients of correlation calculation is perfect

    New Resistive Switching and Self-Regulating Heating in Foliated Graphite/Nickel Polyvinyl Chloride Nanocomposites

    No full text
    Polyvinyl chloride- (PVC-) based nanocomposites containing nanosized graphite and nickel nanoparticles (GN) as conductive fillers to achieve positive temperature coefficient of resistance (PTCR) thermistors and self-regulating heater function have been successfully fabricated. The microstructure of the foliated graphite and nanocomposites was examined by scanning electron microscopy (SEM). The effect of GN content on the static electrical conductivity, carrier's mobility, and number of charge carriers of the nanocomposites was studied. The applicability of nanocomposites as PTCR thermistors was examined by monitoring the conductivity as a function of temperature. It is found that the conduction mechanism in PVC/GN nanocomposites is governed by tunneling mechanism. Also, the applied voltage versus current and temperature were studied to check the applicability of composites as self-regulating heater. The results show that the PVC/GN nanocomposites might have potential applications in PTCR devices, self-regulating heater, and temperature sensors

    Dielectric properties of Ba 1- x

    No full text
    corecore