6 research outputs found

    Investigation and evaluation of the hybrid system of energy storage for renewable energies

    Get PDF
    The system presented in this paper can change the energy storage landscape by having the advantages of a compressed air storage system and pump storage, as well as minimizing the disadvantages of these two systems. One of the advantages of this system compared to similar systems is the lack of combustion of natural gas. Correspondingly, for construction, it does not require specific specifications for the executive site, and control of the energy and heat of the system (due to the use of water as an operational fluid) is easier than similar systems. In addition, this system is very scalable and can be designed in low capacities to high capacities, energy analysis of this research to identify the basic and effective parameters of the system and determine the limitations and relationships between them. The amount of energy saved in the current research system compared to previous research is significant, and 92% efficiency can be achieved. The energy analysis of this research determined the effect of the parameters on each other and their limitations so that the path of its feasibility design was paved.Web of Science165art. no. 233

    Solar Desiccant Cooling System for a Commercial Building in Kuwait’s Climatic Condition

    No full text
    The use of air conditioning in buildings to provide a comfortable environment accounts for up to 75% of the electricity consumed in Kuwait for the hot season from April through to the end of October. The widespread adoption of air conditioning systems in buildings has resulted in an increased demand for electricity. This has led to an increased peak load demand that has resulted in a larger carbon footprint and placed the electricity grid under significant strain. Heat-driven air conditioning systems that use solar energy are now emerging as alternatives to electricity-driven conventional refrigerated air conditioners. These systems are more energy-efficient, with lower carbon emissions while also ensuring better indoor air quality and comfort when optimally designed. Among the heat-driven air conditioning systems, the desiccant cooling system is among the systems with the most potential. This paper presents a numerical investigation of the design optimization of solar desiccant cooling systems for Kuwait’s climate. The numerical model of the system is developed using validated components. The various design configurations analysed include a solar heating system and regeneration air for the desiccant wheel. It is found that an evacuated tube solar collector in conjunction with return air from the building to regenerate the desiccant wheel provides the best results

    Improving the Corrosion Resistance of NiNb-Based Bulk Metallic Glass through the Hot Compression

    No full text
    This paper aims to study and evaluate the corrosion resistance of Ni55Nb45 and Ni55Nb35Co5Zr5 bulk metallic glasses (BMGs) in an environment similar to proton exchange membrane fuel cells. Moreover, the hot compression process was carried out to find the effects of a thermomechanical treatment on the corrosion resistance. The X-ray diffraction (XRD) test indicated that the hot compression process led to formation of crystalline species in both samples; however, it was more pronounced in the Ni55Nb35Co5Zr5 alloy. It is suggested that the minor addition of Zr and Co facilitated the crystallization in the material. The polarization test unveiled that the hot compression deteriorated the corrosion resistance of the Ni55Nb45 alloy through the introduction of anomalous chemical interfaces. On the other hand, the hot deformation affected the Ni55Nb35Co5Zr5 alloy in a positive way, so that the corrosion behavior improved compared with its fully glassy state. It is suggested that the hot deformation induces some NiNb crystalline constituencies in the microstructure of Ni55Nb35Co5Zr5 BMG, leading to the enrichment of glassy matrix from Zr/Co constituencies and the enhancement of corrosion resistance

    Technical, Economic, and Environmental Analysis and Comparison of Different Scenarios for the Grid-Connected PV Power Plant

    No full text
    Today, using systems based on renewable resources is a suitable alternative to fossil fuels. However, due to problems such as the lack of access in all the times needed to supply cargo and high-investment cost, it has not been well-received. Therefore, in this research, the modeling of the photovoltaic system with battery storage has been done to supply the required load, and various scenarios have been evaluated in terms of economic parameters and reliability indicators of the studied system for a better understanding of the comparison indicators. It has been evaluated from two modes, one connected to the network and one disconnected from the network. One of the important results is the supply of 56% of the load by the photovoltaic cell in the presence of the grid, which, in this scenario, the electrical load is supplied by the photovoltaic cell and the grid is 164.155 kWh/yr and 128.504 kWh/yr, respectively

    Technical, Economic, and Environmental Analysis and Comparison of Different Scenarios for the Grid-Connected PV Power Plant

    No full text
    Today, using systems based on renewable resources is a suitable alternative to fossil fuels. However, due to problems such as the lack of access in all the times needed to supply cargo and high-investment cost, it has not been well-received. Therefore, in this research, the modeling of the photovoltaic system with battery storage has been done to supply the required load, and various scenarios have been evaluated in terms of economic parameters and reliability indicators of the studied system for a better understanding of the comparison indicators. It has been evaluated from two modes, one connected to the network and one disconnected from the network. One of the important results is the supply of 56% of the load by the photovoltaic cell in the presence of the grid, which, in this scenario, the electrical load is supplied by the photovoltaic cell and the grid is 164.155 kWh/yr and 128.504 kWh/yr, respectively

    Modeling and investigating electric power output maximization for piezoelectric energy harvester

    No full text
    In this study, energy harvesting using a two-layer piezoelectric sensor in non-linear single-mode mode was investigated, and the optimal performance conditions for power extraction were investigated. Non-linear equations or non-linear electric enthalpy proposal were obtained using Lagrange’s method. In addition, the model was identified with the help of perturbation methods and based on experimental results. The results indicate the presence of second-order damping and third-order stiffness with magnitudes of 2.8 × 106 and −3.9 × 1021. Finally, non-linear energy harvesting was investigated, and the electrical resistance for an optimal electrical power of 185.2 was obtained
    corecore