39 research outputs found

    Status of advanced ground-based laser interferometers for gravitational-wave detection

    Get PDF
    Ground-based laser interferometers for gravitational-wave (GW) detection were first constructed starting 20 years ago and as of 2010 collection of several years' worth of science data at initial design sensitivities was completed. Upgrades to the initial detectors together with construction of brand new detectors are ongoing and feature advanced technologies to improve the sensitivity to GWs. This conference proceeding provides an overview of the common design features of ground-based laser interferometric GW detectors and establishes the context for the status updates of each of the four gravitational-wave detectors around the world: Advanced LIGO, Advanced Virgo, GEO600 and KAGRA

    Pre-DECIGO can get the smoking gun to decide the astrophysical or cosmological origin of GW150914-like binary black holes

    Get PDF
    Pre-DECIGO consists of three spacecraft arranged in an equilateral triangle with 100km arm lengths orbiting 2000km above the surface of the earth. It is hoped that the launch date will be in the late 2020s. Pre-DECIGO has one clear target: binary black holes (BBHs) like GW150914 and GW151226. Pre-DECIGO can detect 30M30M\sim 30M_\odot-30M_\odot BBH mergers up to redshift z30z\sim 30. The cumulative event rate is 1.8×105events yr1\sim 1.8\times 10^{5}\,{\rm events~yr^{-1}} in the Pop III origin model of BBHs like GW150914, and it saturates at z10z\sim 10, while in the primordial BBH (PBBH) model, the cumulative event rate is 3×104events yr1 \sim 3\times 10^{4}\,{\rm events~ yr^{-1}} at z=30z=30 even if only 0.1%0.1\% of the dark matter consists of PBHs, and it is still increasing at z=30z=30. In the Pop I/II model of BBHs, the cumulative event rate is (310)×105events yr1(3-10)\times10^{5}\,{\rm events~ yr^{-1}} and it saturates at z6z \sim 6. We present the requirements on orbit accuracy, drag free techniques, laser power, frequency stability, and interferometer test mass. For BBHs like GW150914 at 1Gpc, SNR90\sim 90 is achieved with the definition of Pre-DECIGO in the 0.011000.01-100Hz band. Pre-DECIGO can measure the mass spectrum and the zz-dependence of the merger rate to distinguish various models of BBHs like GW150914. Pre-DECIGO can also predict the direction of BBHs at z=0.1z=0.1 with an accuracy of 0.3deg2\sim 0.3\,{\rm deg}^2 and a merging time accuracy of 1\sim 1s at about a day before the merger so that ground-based GW detectors further developed at that time as well as electromagnetic follow-up observations can prepare for the detection of merger in advance. For intermediate mass BBHs at a large redshift z>10z > 10, the QNM frequency after the merger can be within the Pre-DECIGO band so that the ringing tail can also be detectable to confirm the Einstein theory of general relativity with SNR35\sim 35. [abridged]Comment: 17 pages, 10 figures, added some references, modifications to match the published version in PTE

    Search for a stochastic background of 100-MHz gravitational waves with laser interferometers

    Full text link
    This letter reports the results of a search for a stochastic background of gravitational waves (GW) at 100 MHz by laser interferometry. We have developed a GW detector, which is a pair of 75-cm baseline synchronous recycling (resonant recycling) interferometers. Each interferometer has a strain sensitivity of ~ 10^{-16} Hz^{-1/2} at 100 MHz. By cross-correlating the outputs of the two interferometers within 1000 seconds, we found h_{100}^2 Omega_{gw} < 6 times 10^{25} to be an upper limit on the energy density spectrum of the GW background in a 2-kHz bandwidth around 100 MHz, where a flat spectrum is assumed.Comment: Accepted by Phys.Rev.Lett.; 10 pages, 4 figure

    Improvement of the target sensitivity in DECIGO by optimizing its parameters for quantum noise including the effect of diffraction loss

    Full text link
    DECIGO is the future Japanese gravitational wave detector in outer space. We previously set the default design parameters to provide a good target sensitivity to detect the primordial gravitational waves (GWs). However, the updated upper limit of the primordial GWs by the Planck observations motivated us for further optimization of the target sensitivity. Previously, we had not considered optical diffraction loss due to the very long cavity length. In this paper, we optimize various DECIGO parameters by maximizing the signal-to-noise ratio (SNR), for the primordial GWs to quantum noise including the effects of diffraction loss. We evaluated the power spectrum density for one cluster in DECIGO utilizing the quantum noise of one differential Fabry-Perot interferometer. Then we calculated the SNR by correlating two clusters in the same position. We performed the optimization for two cases: the constant mirror-thickness case and the constant mirror-mass case. As a result, we obtained the SNR dependence on the mirror radius, which also determines various DECIGO parameters. This result is the first step toward optimizing the DECIGO design by considering the practical constraints on the mirror dimension and implementing other noise sources.Comment: 13 pages, 12 figure

    Optimal Location of Two Laser-interferometric Detectors for Gravitational Wave Backgrounds at 100 MHz

    Full text link
    Recently, observational searches for gravitational wave background (GWB) have been developed and given constraints on the energy density of GWB in a broad range of frequencies. These constraints have already resulted in the rejection of some theoretical models of relatively large GWB spectra. However, at 100 MHz, there is no strict upper limit from direct observation, though an indirect limit exists due to He4 abundance due to big-bang nucleosynthesis. In our previous paper, we investigated the detector designs that can effectively respond to GW at high frequencies, where the wavelength of GW is comparable to the size of a detector, and found that the configuration, a so-called synchronous-recycling interferometer is best at these sensitivity. In this paper, we investigated the optimal location of two synchronous-recycling interferometers and derived their cross-correlation sensitivity to GWB. We found that the sensitivity is nearly optimized and hardly changed if two coaligned detectors are located within a range 0.2 m, and that the sensitivity achievable in an experiment is far below compared with the constraint previously obtained in experiments.Comment: 17 pages, 6 figure
    corecore