1,588 research outputs found
An arm length stabilization system for KAGRA and future gravitational-wave detectors
Modern ground-based gravitational wave (GW) detectors require a complex interferometer configuration with multiple coupled optical cavities. Since achieving the resonances of the arm cavities is the most challenging among the lock acquisition processes, the scheme called arm length stabilization (ALS) had been employed for lock acquisition of the arm cavities. We designed a new type of the ALS, which is compatible with the interferometers having long arms like the next generation GW detectors. The features of the new ALS are that the control configuration is simpler than those of previous ones and that it is not necessary to lay optical fibers for the ALS along the kilometer-long arms of the detector. Along with simulations of its noise performance, an experimental test of the new ALS was performed utilizing a single arm cavity of KAGRA. This paper presents the first results of the test where we demonstrated that lock acquisition of the arm cavity was achieved using the new ALS. We also demonstrated that the root mean square of residual noise was measured to be 8.2 Hz in units of frequency, which is smaller than the linewidth of the arm cavity and thus low enough to lock the full interferometer of KAGRA in a repeatable and reliable manner
Statistical Mechanical Calculation of Anisotropic Step Stiffness of a Two-Dimensional Hexagonal Lattice Gas Model with Next-Nearest-Neighbor Interactions: Application to Si(111) Surface
We study a two-dimensional honeycomb lattice gas model with both nearest- and
next-nearest-neighbor interactions in a staggered field, which describes the
surface of stoichiometrically binary crystal.
We calculate anisotropic step tension, step stiffness, and equilibrium island
shape, by an extended random walk method. We apply the results to Si(111)
77 reconstructed surface and high-temperature Si(111) 11
surface. We also calculate inter-step interaction coefficient.Comment: revised on May 29 1999: RevTeX v3.1, 10 pages with 9 figures (one
figure added
An arm length stabilization system for KAGRA and future gravitational-wave detectors
Modern ground-based gravitational wave (GW) detectors require a complex interferometer configuration with multiple coupled optical cavities. Since achieving the resonances of the arm cavities is the most challenging among the lock acquisition processes, the scheme called arm length stabilization (ALS) had been employed for lock acquisition of the arm cavities. We designed a new type of the ALS, which is compatible with the interferometers having long arms like the next generation GW detectors. The features of the new ALS are that the control configuration is simpler than those of previous ones and that it is not necessary to lay optical fibers for the ALS along the kilometer-long arms of the detector. Along with simulations of its noise performance, an experimental test of the new ALS was performed utilizing a single arm cavity of KAGRA. This paper presents the first results of the test where we demonstrated that lock acquisition of the arm cavity was achieved using the new ALS. We also demonstrated that the root mean square of residual noise was measured to be 8.2 Hz in units of frequency, which is smaller than the linewidth of the arm cavity and thus low enough to lock the full interferometer of KAGRA in a repeatable and reliable manner
Vicinal Surface with Langmuir Adsorption: A Decorated Restricted Solid-on-solid Model
We study the vicinal surface of the restricted solid-on-solid model coupled
with the Langmuir adsorbates which we regard as two-dimensional lattice gas
without lateral interaction. The effect of the vapor pressure of the adsorbates
in the environmental phase is taken into consideration through the chemical
potential. We calculate the surface free energy , the adsorption coverage
, the step tension , and the step stiffness by
the transfer matrix method combined with the density-matrix algorithm. Detailed
step-density-dependence of and is obtained. We draw the roughening
transition curve in the plane of the temperature and the chemical potential of
adsorbates. We find the multi-reentrant roughening transition accompanying the
inverse roughening phenomena. We also find quasi-reentrant behavior in the step
tension.Comment: 7 pages, 12 figures (png format), RevTeX 3.1, submitted to Phys. Rev.
Interacting Boson Theory of the Magnetization Process of the Spin-1/2 Ferromagnetic-Antiferromagnetic Alternating Heisenberg Chain
The low temperature magnetization process of the
ferromagnetic-antiferromagnetic Heisenberg chain is studied using the
interacting boson approximation. In the low field regime and near the
saturation field, the spin wave excitations are approximated by the
function boson gas for which the Bethe ansatz solution is available. The finite
temperature properties are calculated by solving the integral equation
numerically. The comparison is made with Monte Carlo calculation and the limit
of the applicability of the present approximation is discussed.Comment: 4 pages, 7 figure
The exact equivalence of the two-flavour strong coupling lattice Schwinger model with Wilson fermions to a vertex model
In this paper a method previously employed by Salmhofer to establish an exact
equivalence of the one-flavour strong coupling lattice Schwinger model with
Wilson fermions to some 8-vertex model is applied to the case with two
flavours. As this method is fairly general and can be applied to strong
coupling QED and purely fermionic models with any (sufficiently small) number
of Wilson fermions in any dimension the purpose of the present study is mainly
a methodical one in order to gain some further experience with it. In the paper
the vertex model equivalent to the two-flavour strong coupling lattice
Schwinger model with Wilson fermions is found. It turns out to be some modified
3-state 20-vertex model on the square lattice, which can also be understood as
a regular 6-state vertex model. In analogy with the one- flavour case, this
model can be viewed as some loop model.Comment: 22 pages LaTe
Algorithms for Finding Small Attractors in Boolean Networks
A Boolean network is a model used to study the interactions between different genes in genetic regulatory networks. In this paper, we present several algorithms using gene ordering and feedback vertex sets to identify singleton attractors and small attractors in Boolean networks. We analyze the average case time complexities of some of the proposed algorithms. For instance, it is shown that the outdegree-based ordering algorithm for finding singleton attractors works in O(1.19 n)timeforK = 2, which is much faster than the naive O(2 n) time algorithm, where n is the number of genes and K is the maximum indegree. We performed extensive computational experiments on these algorithms, which resulted in good agreement with theoretical results. In contrast, we give a simple and complete proof for showing that finding an attractor with the shortest period is NP-hard
Product Wave Function Renormalization Group: construction from the matrix product point of view
We present a construction of a matrix product state (MPS) that approximates
the largest-eigenvalue eigenvector of a transfer matrix T, for the purpose of
rapidly performing the infinite system density matrix renormalization group
(DMRG) method applied to two-dimensional classical lattice models. We use the
fact that the largest-eigenvalue eigenvector of T can be approximated by a
state vector created from the upper or lower half of a finite size cluster.
Decomposition of the obtained state vector into the MPS gives a way of
extending the MPS, at the system size increment process in the infinite system
DMRG algorithm. As a result, we successfully give the physical interpretation
of the product wave function renormalization group (PWFRG) method, and obtain
its appropriate initial condition.Comment: 8 pages, 8 figure
Effect of spin-orbit coupling on the excitation spectrum of Andreev billiards
We consider the effect of spin-orbit coupling on the low energy excitation
spectrum of an Andreev billiard (a quantum dot weakly coupled to a
superconductor), using a dynamical numerical model (the spin Andreev map).
Three effects of spin-orbit coupling are obtained in our simulations: In zero
magnetic field: (1) the narrowing of the distribution of the excitation gap;
(2) the appearance of oscillations in the average density of states. In strong
magnetic field: (3) the appearance of a peak in the average density of states
at zero energy. All three effects have been predicted by random-matrix theory.Comment: 5 pages, 4 figure
- …