3 research outputs found

    Microstructure and Strength Development of Sodium Carbonate–Activated Blast Furnace Slags

    Get PDF
    This paper presents the study of alkali-activated slags where sodium carbonate acts as a primary activator. The slow activation mechanism of sodium carbonate is accelerated by sodium hydroxide and with traces of calcium hydroxide. Strength development and the progress of hydration of the mixes were studied with the phase transformation and development of microstructural features through quantitative techniques such as thermogravimetric analysis and phase-identification techniques such as Fourier transform infrared spectroscopy and X-ray diffraction. Sodium carbonate replacement with sodium hydroxide and the presence of calcium hydroxide in the binder as a replacement for the slag enhances the rate of dissolution of slag, leading to faster strength development. Calcium hydroxide significantly increases the compressive strength, even at an early age. On the other hand, sodium hydroxide substitution is effective at later ages of the reaction when used at high dosages (e.g., 40%). Formation of strength-giving phases such as hydrotalcite and calcium aluminum silicate hydrate are confirmed with microstructure analysis and explain the strength development

    Hydration kinetics and performance of sodium carbonate-activated slag-based systems containing reactive MgO and metakaolin under carbonation

    No full text
    The hydration mechanism and strength development of sodium carbonate-activated slag-based systems mainly depend on the additives used. Although the effects of mineral additives in such systems have been extensively investigated, the effects of Mg2+, Al3+, and Si4+ ions increasing with the addition of reactive MgO (Mg) and metakaolin (Mk) on the hydration mechanism of such systems have not been established yet. This study investigated the hydration kinetics and performance of sodium carbonate-activated ternary blended slag-based binder systems. The hydration mechanism was revealed by isothermal calorimetry and mechanical performance was evaluated with the measurement of compressive strength at different ages up to 56 days. The reaction mechanisms were investigated through X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis and 29Si and 27Al solid-state nuclear magnetic resonance (NMR). C-(A)-S-H, Na and Al-enriched C-(N,A)-S-H and hydrotalcite were the main reaction products responsible for the strength development of the samples, accompanied by the minor contribution of other carbonate-containing phases. Partial replacement of slag with Mg and Mk led to high early-age strengths compared to plain samples when Mk was used at 5%. Samples incorporating Mg and Mk achieved similar or higher strengths than ordinary Portland cement-based samples. However, an increase in replacement ratio of Mk beyond 5% led to a significant decrease in compressive strength. Furthermore, the performance of samples under accelerated carbonation was studied. The use of Mg and Mk enhanced carbonation resistance due to enhanced hydrotalcite and C-(N,A)-S-H gel formation, highlighting the potential of using slag-Mg-Mk blends as an alternative binder system
    corecore