958 research outputs found

    Radiation from hot bare strange stars

    Full text link
    We present the results of numerical simulations of stationary, spherically outflowing, pair winds, with total luminosities of L=10^{35}- 10^{42} ergs/s. These results have direct relevance to the emission from hot, bare, strange stars, which are thought to be powerful sources of electron-positron pairs created by the Coulomb barrier at the quark surface. The spectra of emergent photons and pairs are calculated. For L > 2x10^{35} erg/s, photons dominate the emerging emission. As L increases from 10^{35} to 10^{42} ergs/s, the mean photon energy decreases from ~ 400-500 keV to 40 keV, while the spectrum changes in shape from a wide annihilation line to being nearly blackbody with a high energy (> 100 keV) tail. Such a correlation of the photon spectrum with the luminosity, together with the fact that super-Eddington luminosities can be achieved, might be a good observational signature of hot, bare, strange stars.Comment: 4 pages, 4 figures, Accepted in MNRAS, includes minor correction

    Pair Winds in Schwarzschild Spacetime with Application to Strange Stars

    Full text link
    We present the results of numerical simulations of stationary, spherically outflowing, electron-positron pair winds, with total luminosities in the range 10^{34}--10^{42} ergs/s. In the concrete example described here, the wind injection source is a hot, bare, strange star, predicted to be a powerful source of pairs created by the Coulomb barrier at the quark surface. We find that photons dominate in the emerging emission, and the emerging photon spectrum is rather hard and differs substantially from the thermal spectrum expected from a neutron star with the same luminosity. This might help distinguish the putative bare strange stars from neutron stars.Comment: 3 pages, 2 figures, Invited talk at 11th Marcel Grossmann Meeting, Berlin, July 200

    Feasibility of study magnetic proximity effects in bilayer "superconductor/ferromagnet" using waveguide-enhanced Polarized Neutron Reflectometry

    Full text link
    A resonant enhancement of the neutron standing waves is proposed to use in order to increase the magnetic neutron scattering from a "superconductor/ferromagnet"(S/F) bilayer. The model calculations show that usage of this effect allows to increase the magnetic scattering intensity by factor of hundreds. Aspects related to the growth procedure (order of deposition, roughness of the layers etc) as well as experimental conditions (resolution, polarization of the neutron beam, background etc) are also discussed. Collected experimental data for the S/F heterostructure Cu(32nm)/V(40nm)/Fe(1nm)/MgO confirmed the presence of a resonant 60-fold amplification of the magnetic scattering.Comment: The manuscript of the article submitted to Crysstalography Reports. 23 pages, 5 figure

    Convergence Acceleration Techniques

    Full text link
    This work describes numerical methods that are useful in many areas: examples include statistical modelling (bioinformatics, computational biology), theoretical physics, and even pure mathematics. The methods are primarily useful for the acceleration of slowly convergent and the summation of divergent series that are ubiquitous in relevant applications. The computing time is reduced in many cases by orders of magnitude.Comment: 6 pages, LaTeX; provides an easy-to-understand introduction to the field of convergence acceleratio

    GRBs and the thermalization process of electron-positron plasmas

    Full text link
    We discuss the temporal evolution of the pair plasma created in Gamma-Ray Burst sources. A particular attention is paid to the relaxation of the plasma into thermal equilibrium. We also discuss the connection between the dynamics of expansion and the spatial geometry of the plasma. The role of the baryonic loading parameter is emphasized.Comment: 4 pages, 3 figures, in the Proceedings of the "Gamma Ray Bursts 2007" meeting, November 5-9, 2007, Santa Fe, New Mexico, US

    Effect of local Coulomb interaction on Majorana corner modes: weak and strong correlation limits

    Full text link
    Here we present an analysis of the evolution of Majorana corner modes realizing in a higher-order topological superconductor (HOTSC) on a square lattice under the influence of local Coulomb repulsion. The HOTSC spectral properties were considered in two regimes: when the intensities of many-body interactions are either weak or strong. The weak regime was studied using the mean-field approximation with self-consistent solutions carried out both in the uniform case and taking into account of the boundary of the finite square-shaped system. It is shown that in the uniform case the topologically nontrivial phase on the phase diagram is widened by the Coulomb repulsion. The boundary effect, resulting in an inhomogeneous spatial distribution of the correlators, leads to the appearance of the crossover from the symmetric spin-independent solution to the spin-dependent one characterized by a spontaneously broken symmetry. In the former the corner states have energies that are determined by the overlap of the excitation wave functions localized at the different corners. In the latter the corner excitation energy is defined by the Coulomb repulsion intensity with a quadratic law. The crossover is a finite size effect, i.e. the larger the system the lesser the critical value of the Coulomb repulsion. In the strong repulsion regime we derive the effective HOTSC Hamiltonian in the atomic representation and found a rich variety of interactions induced by virtual processes between the lower and upper Hubbard subbands. It is shown that Majorana corner modes still can be realized in the limit of the infinite repulsion. Although the boundaries of the topologically nontrivial phase are strongly renormalized by Hubbard corrections.Comment: 13 pages, 6 figure
    • …
    corecore