77 research outputs found

    Risk factors for <i>Clostridium difficile</i> infection in hospitalized patients with community-acquired pneumonia

    Get PDF
    Objectives: Clostridium difficile infection (CDI) is strongly associated with anti-biotic treatment, and community-acquired pneumonia (CAP) is the leading indication for anti-biotic prescription in hospitals. This study assessed the incidence of and risk factors for CDI in a cohort of patients hospitalized with CAP. Methods: We analysed data from a prospective, observational cohort of patients with CAP in Edinburgh, UK. Patients with diarrhoea were systematically screened for CDI, and risk factors were determined through time-dependent survival analysis. Results: Overall, 1883 patients with CAP were included, 365 developed diarrhoea and 61 had laboratory-confirmed CDI. The risk factors for CDI were: age (hazard ratio [HR], 1.06 per year; 95% confidence interval [CI], 1.03-1.08), total number of antibiotic classes received (HR, 3.01 per class; 95% CI, 2.32-3.91), duration of antibiotic therapy (HR, 1.09 per day; 95% CI, 1.00-1.19 and hospitalization status (HR, 13.1; 95% CI, 6.0-28.7). Antibiotic class was not an independent predictor of CDI when adjusted for these risk factors (P &gt; 0.05 by interaction testing).Conclusions: These data suggest that reducing the overall antibiotic burden, duration of antibiotic treatment and duration of hospital stay may reduce the incidence of CDI in patients with CAP.</p

    Combined fluorescence lifetime and surface topographical imaging of biological tissue

    Get PDF
    In this work a combined fluorescence lifetime and surface topographical imaging system is demonstrated. Based around a 126 × 192 time resolved single photon avalanche diode (SPAD) array operating in time correlated single-photon counting (TCSPC) mode, both the fluorescence lifetime and time of flight (ToF) can be calculated on a pixel by pixel basis. Initial tests on fluorescent samples show it is able to provide 4 mm resolution in distance and 0.4 ns resolution in lifetime. This combined modality has potential biomedical applications such as surgical guidance, endoscopy and diagnostic imaging. The system is demonstrated on both ovine and human pulmonary tissue samples, where it offers excellent fluorescence lifetime contrast whilst also giving a measure of the distance to the sample surfac

    Estimating Bacterial and Cellular Load in FCFM Imaging

    Get PDF
    We address the task of estimating bacterial and cellular load in the human distal lung with fibered confocal fluorescence microscopy (FCFM). In pulmonary FCFM some cells can display autofluorescence, and they appear as disc like objects in the FCFM images, whereas bacteria, although not autofluorescent, appear as bright blinking dots when exposed to a targeted smartprobe. Estimating bacterial and cellular load becomes a challenging task due to the presence of background from autofluorescent human lung tissues, i.e., elastin, and imaging artifacts from motion etc. We create a database of annotated images for both these tasks where bacteria and cells were annotated, and use these databases for supervised learning. We extract image patches around each pixel as features, and train a classifier to predict if a bacterium or cell is present at that pixel. We apply our approach on two datasets for detecting bacteria and cells respectively. For the bacteria dataset, we show that the estimated bacterial load increases after introducing the targeted smartprobe in the presence of bacteria. For the cell dataset, we show that the estimated cellular load agrees with a clinician’s assessment

    Fibroblast Activation Protein specific optical imaging in Non-Small Cell Lung Cancer

    Get PDF
    Fibroblast activation protein (FAP) is a cell surface propyl-specific serine protease involved in the regulation of extracellular matrix. Whilst expressed at low levels in healthy tissue, upregulation of FAP on fibroblasts can be found in several solid organ malignancies, including non-small cell lung cancer, and chronic inflammatory conditions such as pulmonary fibrosis and rheumatoid arthritis. Their full role remains unclear, but FAP expressing cancer associated fibroblasts (CAFs) have been found to relate to a poor prognosis with worse survival rates in breast, colorectal, pancreatic, and non-small cell lung cancer (NSCLC). Optical imaging using a FAP specific chemical probe, when combined with clinically compatible imaging systems, can provide a readout of FAP activity which could allow disease monitoring, prognostication and potentially stratify therapy. However, to derive a specific signal for FAP any sequence must retain specificity over closely related endopeptidases, such as prolyl endopeptidase (PREP), and be resistant to degradation in areas of active inflammation. We describe the iterative development of a FAP optical reporter sequence which retains FAP specificity, confers resistance to degradation in the presence of activated neutrophil proteases and demonstrates clinical tractability ex vivo in NSCLC samples with an imaging platform

    Phototherapeutic Induction of Immunogenic Cell Death and CD8+ T Cell-Granzyme B Mediated Cytolysis in Human Lung Cancer Cells and Organoids

    Get PDF
    SIMPLE SUMMARY: Immunogenic cancer cell death and photodynamic therapy play an important emerging role in cancer treatment. Understanding mechanisms involved in tumor killing via immune cells in response to photodynamic therapy is important for developing new anticancer approaches. In this study, we report that methylene blue photodynamic therapy decreases the proliferation of lung cancer cells and patient derived non-small cell lung cancer organoids via immunogenic cells death and granzyme B mediated cytolysis. ABSTRACT: Augmenting T cell mediated tumor killing via immunogenic cancer cell death (ICD) is the cornerstone of emerging immunotherapeutic approaches. We investigated the potential of methylene blue photodynamic therapy (MB-PDT) to induce ICD in human lung cancer. Non-Small Cell Lung Cancer (NSCLC) cell lines and primary human lung cancer organoids were evaluated in co-culture killing assays with MB-PDT and light emitting diodes (LEDs). ICD was characterised using immunoblotting, immunofluorescence, flow cytometry and confocal microscopy. Phototherapy with MB treatment and low energy LEDs decreased the proliferation of NSCLC cell lines inducing early necrosis associated with reduced expression of the anti-apoptotic protein, Bcl2 and increased expression of ICD markers, calreticulin (CRT), intercellular cell-adhesion molecule-1 (ICAM-1) and major histocompatibility complex I (MHC-I) in NSCLC cells. MB-PDT also potentiated CD8(+) T cell-mediated cytolysis of lung cancer via granzyme B in lung cancer cells and primary human lung cancer organoids

    T cells drive negative feedback mechanisms in Cancer Associated Fibroblasts, promoting expression of co-inhibitory ligands, CD73 and IL-27 in non-small cell lung cancer

    Get PDF
    The success of immune checkpoint therapy shows tumor-reactive T cells can eliminate cancer cells but are restrained by immunosuppression within the tumor micro-environment (TME). Cancer associated fibroblasts (CAFs) are the dominant stromal cell in the TME and co-localize with T cells in non-small cell lung cancer. We demonstrate the bidirectional nature of CAF/T cell interactions; T cells promote expression of co-inhibitory ligands, MHC molecules and CD73 on CAFs, increasing their production of IL-6 and eliciting production of IL-27. In turn CAFs upregulate co-inhibitory receptors on T cells including the ectonucleotidase CD39 promoting development of an exhausted but highly cytotoxic phenotype. Our results highlight the bidirectional interaction between T cells and CAFs in promoting components of the immunosuppressive CD39, CD73 adenosine pathway and demonstrate IL-27 production can be induced in CAF by activated T cells

    Sub millimetre flexible fibre probe for background and fluorescence free Raman spectroscopy

    Get PDF
    Using the shifted-excitation Raman difference spectroscopy technique and an optical fibre featuring a negative curvature excitation core and a coaxial ring of high numerical aperture collection cores, we have developed a portable, background and fluorescence free, endoscopic Raman probe. The probe consists of a single fibre with a diameter of less than 0.25 mm packaged in a sub-millimetre tubing, making it compatible with standard bronchoscopes. The Raman excitation light in the fibre is guided in air and therefore interacts little with silica, enabling an almost background free transmission of the excitation light. In addition, we used the shifted-excitation Raman difference spectroscopy technique and a tunable 785 nm laser to separate the fluorescence and the Raman spectrum from highly fluorescent samples, demonstrating the suitability of the probe for biomedical applications. Using this probe we also acquired fluorescence free human lung tissue data
    corecore