2 research outputs found

    Application of resistance energy model to optimising electric power consumption of a belt conveyor system

    Get PDF
    Driven by constantly increasing energy demands, prices, environmental impact caused by carbon dioxide emissions and global warming, efficient use of energy is gaining grounds in both public and private enterprises. The energy consumption of belt conveyors can be lowered using energy modelling techniques. In this research, a resistance-based mathematical energy model was utilised in the electrical energy efficiency optimisation of the troughed, inclined belt conveyor system taking into account indentation rolling resistance, bulk solid flexure resistance and secondary resistance as they together contribute 89% resistance to motion. An optimisation problem was formulated to optimise the electrical energy efficiency of the belt conveyor system and subsequently solved using the “fmincon” solver and interior point algorithm of the MATLAB optimisation toolbox. Analysis of simulation results showed that for the same given operating capacities, an average energy saving of about 7.42% and an annual total cost savings of Gh¢ 5, 852, 669.00 (USD 1, 083, 827.59) for a 2592-hour operation can be achieved when the used model and optimisation technique are employed over the constant speed operation

    Development of a Programmable Logic Controller Training Platform for the Industrial Control of Processes

    Get PDF
    This paper presents an interactive, less expensive and more portable Programmable Logic Controller (PLC) training platform for the industrial control of processes. The proposed system employs Delta DVP14SS2 PLC, WPLSoft software, a programming device, switches as inputs and pilot lamps as outputs. The training system gives one the flexibility to wire and program any type of inputs and outputs of one’s choice and can be easily carried in one’s laptop bag giving one the freedom to learn the PLC anywhere at one’s own comfort. The paper is also meant to enlighten beginners and experienced PLC users to build themselves PLC trainers which can enhance their understanding of the theoretical knowledge gained from school. Traffic light automation application is set up to train the Electrical and Electronic Engineering students to measure the applicability of the system. Pre-test and post test are conducted for participating students as a way of measuring the understanding level of the student before and after training. Cost analysis indicates that the individual can build the trainer on one’s own at a cost of $ 214
    corecore