139 research outputs found

    A Fast-rate WLAN Measurement Tool for Improved Miss-rate in Indoor Navigation

    Full text link
    Recently, location-based services (LBS) have steered attention to indoor positioning systems (IPS). WLAN-based IPSs relying on received signal strength (RSS) measurements such as fingerprinting are gaining popularity due to proven high accuracy of their results. Typically, sets of RSS measurements at selected locations from several WLAN access points (APs) are used to calibrate the system. Retrieval of such measurements from WLAN cards are commonly at one-Hz rate. Such measurement collection is needed for offline radio-map surveying stage which aligns fingerprints to locations, and for online navigation stage, when collected measurements are associated with the radio-map for user navigation. As WLAN network is not originally designed for positioning, an RSS measurement miss could have a high impact on the fingerprinting system. Additionally, measurement fluctuations require laborious signal processing, and surveying process can be very time consuming. This paper proposes a fast-rate measurement collection method that addresses previously mentioned problems by achieving a higher probability of RSS measurement collection during a given one-second window. This translates to more data for statistical processing and faster surveying. The fast-rate collection approach is analyzed against the conventional measurement rate in a proposed testing methodology that mimics real-life scenarios related to IPS surveying and online navigation

    Fast prototyping of an SDR WLAN 802.11b receiver for an indoor positioning system

    Full text link
    Indoor positioning systems (IPS) are emerging technologies due to an increasing popularity and demand in location based service (LBS). Because traditional positioning systems such as GPS are limited to outdoor applications, many IPS have been proposed in literature. WLAN-based IPS are the most promising due to its proven accuracy and infrastructure deployment. Several WLAN-based IPS have been proposed in the past, from which the best results have been shown by so-called fingerprint-based systems. This paper proposes an indoor positioning system which extends traditional WLAN fingerprinting by using received signal strength (RSS) measurements along with channel estimates as an effort to improve classification accuracy for scenarios with a low number of Access Points (APs). The channel estimates aim to characterize complex indoor environments making it a unique signature for fingerprinting-based IPS and therefore improving pattern recognition in radio-maps. Since commercial WLAN cards offer limited measurement information, software-defined radio (SDR) as an emerging trend for fast prototyping and research integration is chosen as the best cost-effective option to extract channel estimates. Therefore, this paper first proposes an 802.11b WLAN SDR beacon receiver capable of measuring RSS and channel estimates. The SDR is designed using LabVIEW (LV) environment and leverages several inherent platform acceleration features that achieve real-time capturing. The receiver achieves a fast-rate measurement capture of 9 packets per second per AP. The classification of the propose IPS uses a support vector machine (SVM) for offline training and online navigation. Several tests are conducted in a cluttered indoor environment with a single AP in 802.11b legacy mode. Finally, navigation accuracy results are discussed

    On Optimal Bit Allocation for Classification-Based Source-Dependent Transform Coding

    Get PDF
    An optimal bit allocation is presented for classification-based source-dependent transform coding. A vector of transform coefficients is considered to have been produced by a mixture of processes. The available bit resource is distributed optimally in two stages: (1) bit allocation is performed for each class of coefficient vectors, and (2) bit allocation is performed for each vector coefficient. The solution for low bit rates imposing nonnegative bit resource is also presented. The rate-distortion bound of the classification-based source coding is derived

    Signal Recognition Particle: An Essential Protein-Targeting Machine

    Get PDF
    The signal recognition particle (SRP) and its receptor compose a universally conserved and essential cellular machinery that couples the synthesis of nascent proteins to their proper membrane localization. The past decade has witnessed an explosion in in-depth mechanistic investigations of this targeting machine at increasingly higher resolutions. In this review, we summarize recent work that elucidates how the SRP and SRP receptor interact with the cargo protein and the target membrane, respectively, and how these interactions are coupled to a novel GTPase cycle in the SRP·SRP receptor complex to provide the driving force and enhance the fidelity of this fundamental cellular pathway. We also discuss emerging frontiers in which important questions remain to be addressed
    • …
    corecore