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An optimal bit allocation is presented for classification-based source-dependent transform coding. A vector of transform coeffi-
cients is considered to have been produced by a mixture of processes. The available bit resource is distributed optimally in two
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coefficient. The solution for low bit rates imposing nonnegative bit resource is also presented. The rate-distortion bound of the
classification-based source coding is derived.
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1. INTRODUCTION

Source coding techniques are used to reduce data in digi-
tal systems to meet realistic transmission and storage con-
straints. In many such systems, data is reduced using quantiz-
ers and bit allocation methods which encode quantizer out-
puts for further processing. Quantizers apply to original or
transformed data and their outputs can be compactly rep-
resented for communication or storage. Popular compressed
image formats such as JPEG [1] and JPEG2000 [2] employ
such techniques to reduce data sizes.

Particularly, in the so-called lossy transform/subband
coding techniques [1–20], original signal data are trans-
formed to a vector source, that is, a set of coefficients. Then
each coefficient is quantized to a symbol which is encoded
using certain number of bits. Coarse quantization outputs
are encoded with a fewer number of bits, but the reconstruc-
tion error (distortion) will be higher.

The bit allocation problem for the vector source has been
widely addressed in the literature and many different strate-
gies have been proposed. [9] contains an extensive overview
of various bit allocation approaches in the context of trans-
form/subband coding methods.

The early transform coders were based on i.i.d models
of transform coefficients and bit allocation was performed
in proportion to their importance as defined by the vari-
ance of their distributions [4, 5, 8]. In [4], all of the quan-

tizers are described by the same exponential quantizer func-
tion (QF). The method may result in negative bit rates, which
may be corrected using an iterative procedure. In [5], the QF
is the same for all of the quantizers and is strictly convex, al-
though it is not assumed to be exponential. In addition, a
constraint on the nonnegativity of bit rates is imposed. Both
methods are described by closed-form solutions. More gen-
eral approaches have been suggested in [6, 7] with an optimal
bit allocation strategy found for an arbitrary set of quantiz-
ers and integer bit allocation constraint, but the solutions are
not closed-form.

The performance of these coders was later improved by
more accurate modeling of coefficients. One approach sim-
ply assumes that the vector source may come from a finite
set of several possible processes with different distributions
[10–19]. The coder decides to which distribution the coeffi-
cients belong using a classification process and encodes them
properly. The classification process may include additional
transformations [10–14] and may be optimized for signals of
interest, not just typical ones. The classification approach in
[10] improves the compression ratio twice at a fixed distor-
tion, while up to 2 dB improvement in reconstruction quality
is reported for another approach [13].

Practical still image compression techniques [1–3] rely
on simple quantizers, but finely allocate bit resources adap-
tively for each transformed image fragment in an “input-by-
input” manner [9], as opposed to a classification approach
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described above. Each image fragment is coded in a deter-
ministic way with coder parameters optimized for that par-
ticular input and not for the ensemble of inputs. Input-by-
input or the realization-adaptive approach is not well ex-
plained by classical rate distortion theory as many practical
encoders operate in the low bit rate or high distortion region.

Eventhough the realization adaptive approach is in gen-
eral superior for still image compression, the extensions
of classical bit-allocation and classification techniques have
been successfully applied in various applications [15–20].

In this paper, bit allocation technique is presented for
classification-based methods. In Section 2, we systematize
the presentation of our results in [13, 14] which were later
rederived in [17, 18] in another context. Then in Section 3
we extend this solution by imposing the nonnegativity
constraint on bit rates for low rate coding and estimate
the rate-distortion boundary for the classification approach
(Section 3).

2. BIT ALLOCATION FOR CLASSIFICATION-BASED
METHOD

Subsequently in the paper, we operate on blocks (vectors)
of data to be quantized. Our purpose here is to present re-
sults for transform coders where quantization is applied to
the transformed coefficients. However, the method could be
applied to other vector sources as well.

The classical bit allocation techniques assume the same
number of bits allocated to different blocks, and they address
optimal bit resource allocation between coefficients. In our
model, the blocks of data may come from different sources,
and the goal is to optimally distribute the bits among the
blocks and block coefficients [13, 14].

Let R be the average number of bits per sample. If Ri (i =
0, . . . ,M − 1) bits are allocated to the ith coefficient, then the
quantization error in the output of an optimal quantizer can
be modeled as

σ2
qi = ε22−2Riσ2

i , (1)

where ε is the coefficient which depends on the pdf of the
input signal, σ2

i is the variance of the input to quantizer i. By
definition

∑M−1
i=0 Ri = M · R. The following optimal classical

bit allocation minimizes the overall distortion:

Ri = R +
1
2

log2
σ2
i

[∏M−1
j=0 σ

2
j

]1/M . (2)

Let R be the average number of bits per sample, Rk is the
average number of bits per sample for a vector (block) be-
longing to a class k, k ∈ {0, . . . ,K − 1}, Rk,i is the number
of bits assigned to coefficient i of the vector from class k. Let
wk be the probability of a vector (block) from class k. The
probabilities can be estimated based on the block classifica-
tion approach used. For example, it can be estimated using a
training signal, and no constraints are imposed on the classi-
fication approach.

The bit allocation problem is a two-stage process. The
first stage: the average bit resource R is distributed among the

classes so that
∑K−1

k=0 wkRk = R. The second stage: for blocks
assigned to each class k, find the optimal bit allocation strat-
egy among the quantized coefficients with the overall bit re-
source Rk.

For the second stage, the bit allocation is simply the clas-
sical solution:

Rk,i = Rk +
1
2

log2

σ2
k,i

[∏M−1
j=0 σ

2
k, j

]1/M (3)

with the resulting distortion:

Dk = ε22−2Rk

[M−1∏

j=0

σ2
k, j

]1/M

= Ak2−2Rk , (4)

where

Ak = ε2

[M−1∏

j=0

σ2
k, j

]1/M

. (5)

Average distortion over all classes:

D =
K−1∑

k=0

wkDk. (6)

An optimal bit-allocation for the first stage can now be for-
mulated as

min
R0,...,RK−1

D under the constraint
K−1∑

k=0

wkRk = R. (7)

Observe that the resulting distortion for the whole block (4)
is similar to the distortion function in the output of a sin-
gle quantizer (1) with the difference that Rk represents the
average number of bits per sample for blocks from class k.
One can expect that the optimization problem will result in
the classical log-variance rule and this is indeed the case. We
use the method of Lagrange multipliers to solve this problem
[14]:

∂

∂Rk

[

D − λ
(

R−
K−1∑

l=0

wlRl

)]

= 0; k = 0, 1, . . . ,K − 1,

− 2 ln 2Ak2−2Rkwk + λwk = 0, k = 0, 1, . . . ,K − 1,
(8)

from which we find expressions for Rk:

Rk = −1
2

log2
λ

2 ln 2
+

1
2

log2Ak

= Λ +
1
2

log2 Ak, k = 0, 1, . . . ,K − 1.

(9)

From the constraint
∑K−1

l=0 wlRl = R, and the condition
∑K−1

l=0 wl = 1, one can obtain

Λ = R−
K−1∑

l=0

wl

2
log2 Al,

Rk = R−
K−1∑

l=0

wl

2
log2 Al +

1
2

log2 Ak,

(10)
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and finally

Rk = R +
1
2

log2
Ak

∏K−1
l=0

[
Al
]wl . (11)

If the quantization is performed in the transform domain
and inverse orthogonal transform is used to reconstruct data,
then the average distortion in output is equal to the distor-
tion produced by quantizers in the transform domain. The
bit allocation rule obtained above applies. In certain cases,
the distortion of the reconstructed source is not equal to the
distortion introduced by quantizers. This is, for example, the
case when additional weighting is applied prior to quanti-
zation to account for the human visual system or when the
inverse transformation/filterbank is not orthogonal. In such
scenarios, weighting factors γi,k are multiplied to the vari-
ances σ2

k,i and in our solutions σ2
k,i → γk,iσ

2
k,i. More details

for filterbanks can be found in our earlier work [13].

3. BIT ALLOCATION FOR A GENERAL QUANTIZATION
FUNCTION AND LOW BIT RATES

In this section, we generalize the results from [5] for a
classification-based approach to account for a general quan-
tizer function and low bit rates, for which the result of
Section 2 may produce negative bit allocations. Assume that
Q(R) is a quantizer function defining the average distortion
on the quantizer output as a function of the allocated bits, de-
fined for unit variance input. The distortion that results from
quantizing the input with variance σ2 is σ2Q(R). Let Q(R)
be strictly convex with a continuous first derivative Q′(R),
Q′(∞) = 0, and let h(·) be the inverse function of Q′(·). Let
us denote R as the average rate per sample, and Rk, j as the
number of bits assigned to the jth component of the quan-
tized block belonging to a class k. Similarly, σk, j is the vari-
ance of the component j from class k. Then the allocation of
bits that will minimize the average total distortion per block:

D =
K−1∑

k=0

M−1∑

j=0

wkσ
2
k, jQ

(
Rk, j

)
. (12)

Subject to constraints

K−1∑

k=0

wk

M−1∑

j=0

Rk, j =MR,

Rk, j ≥ 0, k = 0, . . . ,K − 1, j = 0, . . . ,M − 1,

(13)

is given by

Rk, j =

⎧
⎪⎪⎨

⎪⎪⎩

R∗k, j = h

(
θ∗

σ2
k, j

Q′(0)

)

, if 0 < θ∗ < σ2
k, j

0, if θ∗ ≥ σ2
k, j ,

(14)

where θ∗ is the unique root of the equation:

∑

k, j:σ2
k, j≥θ∗

wkh
(
θ∗

σk, j
Q′(0)

)

=M · R, (15)

and the value of minimum distortion is

D∗
(
θ∗
) =

∑

k, j:σ2
k, j≥θ∗

wkσ
2
k, jQ

(
R∗k, j

)
+

∑

k, j:σ2
k, j<θ

∗
σ2
k, j . (16)

Proof. This allocation rule follows from [5, Proposition 2.1].
Let us consider the joint quantization of large number (N) of
transform coefficient blocks. The vector is now of larger size,
and let us apply the classical bit allocation to this extended
vector. Then the problem is to minimize the total distortion:

Dt =
N−1∑

n=0

M−1∑

j=0

σ2
j Q
(
Rn, j

)
. (17)

Subject to constraints

N−1∑

n=0

M−1∑

j=0

Rn, j = N ·M · R, Rn, j ≥ 0. (18)

According to [5, Proposition 2.1], the solution to this prob-
lem is

Rn, j =

⎧
⎪⎪⎨

⎪⎪⎩

R∗n, j = h

(
θ∗

σ2
n, j
Q′(0)

)

, if 0 < θ∗ < σ2
n, j

0, if θ∗ ≥ σ2
n, j ,

(19)

where θ∗ is the unique root of the equation:

∑

n, j:σ2
n, j≥θ∗

h

(
θ∗

σn, j
Q′(0)

)

= N ·M · R, (20)

and the value of the minimum overall distortion is

D∗t
(
θ∗
) =

∑

n, j:σ2
n, j≥θ∗

σ2
n, jQ

(
R∗n, j

)
+

∑

n, j:σ2
n, j<θ∗

σ2
n, j. (21)

Recall that there are onlyK possible classes. Let the blocks
from the same classes be grouped together and denote the
number of blocks belonging to class k asNk, k = 0, . . . ,K−1.
Then (20), (21) will become

∑

k, j:σ2
k, j≥θ∗

Nk

N
· h
(
θ∗

σk, j
Q′(0)

)

=M · R,

D∗t
(
θ∗
)

N
=

∑

k, j:σ2
k, j≥θ∗

Nk

N
· σ2

k, jQ
(
R∗k, j

)
+

∑

k, j:σ2
k, j<θ

∗

Nk

N
· σ2

k, j .

(22)

For an ensemble of realizations, Nk/N → wk is the probabil-
ity of the transformed block belonging to a class k. The bit
allocation (19) applies here as well. This concludes the proof
of the above statement.

Remark on rate-distortion bound for the classification-
based source-dependent quantization. The rate-distortion
bound for a unit variance source is given by the formula
R(D) = (1/2) log(1/D), D ≤ 1 with Q(R) = 2−2R, Q′(R) =
−2 · 2−2B · ln 2 and h(x) = (1/2)log2 [−2 ln 2/x], x < 0 [5].
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Figure 1: Example of rate-distortion bound improvement for
source-dependent quantization. Data are assumed from 4 differ-
ent sources, transformed by discrete cosine transform (DCT). Ideal
classification after the DCT transform prior to quantization. Class
probabilities wk are 0.7, 0.1, 0.1, and 0.1. Original sources are sta-
tionary unit variance, zero mean, first-order, Markov processes with
ρk from the set {0.95, 0.75, 0.65, and 0.55}.

For the classification-based source-dependent quantization,
the bit allocation rule described above and k = 0, . . . ,K − 1,
j = 0, . . . ,M − 1, are

Rk, j = max

(

0,
1
2

log2

σ2
k, j

θ∗

)

, (23)

where θ∗ is obtained from

∑

k, j

wk max

(

0,
1
2

log2

σ2
k, j

θ∗

)

=M · R, (24)

and the minimum distortion is

D∗ =
∑

k, j:θ∗≤σ2
k, j

wkθ
∗ +

∑

k, j:θ∗>σ2
k, j

wkσ
2
k, j

=
∑

k, j

wk min
(
θ∗, σ2

k, j

)
.

(25)

Moreover, the side information is bounded by entropy
and the minimum rate for a lossless compression is Rside =
−wklog2 wk, which is counted per transformed block. The
overall rate (per sample) is counted as

R = 1
M
Rside +

1
M

K−1∑

k=0

M−1∑

j=0

wkRk, j . (26)

Figure 1 presents a simulation example. The input sig-
nal is assumed to have blocks of 16 samples from four sta-
tionary unit-variance, first-order, zero-mean, Markov pro-
cesses with covariance function r(n) = ρ|n|. Blocks of data

are transformed by discrete cosine transform (DCT). The pa-
rameters (ρk) and probabilities (wk) for these processes are
(0.95, 0.7), (0.75, 0.1), (0.65, 0.1), and (0.55, 0.1). For rate-
distortion bound estimation it is assumed that an ideal clas-
sification is performed and a comparison is made with con-
ventional bit allocation, which is derived for a single-process
assumption. The rate-distortion figure demonstrates that, at
equal quantization distortions, the bit rate bound achieved
with the source classification method is lower for most of the
rates. When the bit rate approaches zero, the rate-distortion
characteristics are occasionally worse than with the conven-
tional quantization due to the side information. The reason
for this effect lies in the fact that some of the classes are not
assigned any bits due to coarse quantization.

4. CONCLUSION

This paper presents an optimal bit allocation technique
for compression methods using the classification of vector
sources. First, we generalized the well-known log-variance
rule using the exponential quantizer function. The quantizer
function is often approximated more accurately with other
functions and the log-variance rule may produce negative
bit quotas at low bit rates. For this reason, the solution for a
more general quantizer function and low bit rates is also pre-
sented. The rate-distortion bound is calculated for the model
of source-dependent quantization, and it illustrates improve-
ment in coding performance.
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