9 research outputs found

    Re-establishing Responsiveness in a Case of Refractory Metastatic Rectal Cancer with a Personalized de novo Combination Regimen

    Get PDF
    Introduction: Encyclopedic Tumor Analysis (ETA) is multi-analyte, molecular and functional interrogation to identify latent vulnerabilities in solid tumors which can then be targeted in organ- and label-agnostic combination treatment regimens.Case Presentation: We describe here a case of metastatic rectal cancer in a 61-year-old male who was progressed on all prior Standard of Care (SoC) treatment modalities including surgery, chemotherapy and radiotherapy. We addressed disease recurrence via personalized therapy guided by ETA which revealed characteristic molecular heterogeneity in primary and metastatic lesions in terms of single nucleotide variations (SNVs) and gene copy number variations (CNVs).  Notably, a novel TBL1XR1 (Exon1) – PIK3CA (Exon 2) gene fusion was identified in the tumor along with gene copy number gains in TERT, IGF-1R, MYC, FGFR1 and EGFR genes.Conclusion: ETA based molecular analysis with synchronous in vitro chemo-sensitivity profiling strategy helped to define de novo combinatorial therapy regimen of targeted and cytotoxic drugs which countered disease progression at each instance and led to the durable regression of primary as well as metastatic lesions

    Studies on the mechanisms involved in the expression of myosin heavy chain genes in various muscle types of torafugu Takifugu rubripes

    No full text
    報告番号: 甲25840 ; 学位授与年月日: 2010-03-24 ; 学位の種別: 課程博士 ; 学位の種類: 博士(農学) ; 学位記番号: 博農第3540号 ; 研究科・専攻: 農学生命科学研究科水圏生物科学専

    種々のトラフグ筋タイプにおけるミオシン重鎖遺伝子の発現機構に関する研究

    No full text
    University of Tokyo (東京大学

    Adaptive, Iterative, Long-Term Personalized Therapy Management in a Case of Stage IV Refractory NSCLC

    No full text
    In this paper we report long-term therapy management based on iterative de novo molecular and cellular analysis in a case of metastatic non-small cell lung cancer (NSCLC), with prior history of treated colorectal cancer. In the described case temporal tumor evolution, emergent therapy resistance and disease recurrences were addressed via the administration of personalized label- and organ-agnostic treatments based on de novo tumor profiling. This adaptive and iterative treatment strategy countered disease progression at each instance and led to the durable regression of primary as well as metastatic lesions. Concurrently, serial evaluation of mutations in cell-free circulating tumor DNA (ctDNA) via liquid biopsy (LBx) was performed to monitor disease status, ascertain treatment response, identify emergent drug resistance and detect recurrence at sub-radiological levels. The treatment management strategy described herein effectively addressed multiple, sequential clinical conundrums for which viable options were unavailable under the current Standard of Care (SoC)

    Accurate prostate cancer detection based on enrichment and characterization of prostate cancer specific circulating tumor cells

    No full text
    Abstract Background The low specificity of serum PSA resulting in the inability to effectively differentiate prostate cancer from benign prostate conditions is a persistent clinical challenge. The low sensitivity of serum PSA results in false negatives and can miss high‐grade prostate cancers. We describe a non‐invasive test for detection of prostate cancer based on functional enrichment of prostate adenocarcinoma associated circulating tumor cells (PrAD‐CTCs) from blood samples followed by their identification by immunostaining for pan‐cytokeratins (PanCK), prostate specific membrane antigen (PSMA), alpha methyl‐acyl coenzyme‐A racemase (AMACR), epithelial cell adhesion molecule (EpCAM), and common leucocyte antigen (CD45). Methods Analytical validation studies were performed to establish the performance characteristics of the test using VCaP prostate cancer cells spiked into healthy donor blood (HDB). The clinical performance characteristics of the test were evaluated in a case–control study with 160 known prostate cancer cases and 800 healthy males, followed by a prospective clinical study of 210 suspected cases of prostate cancer. Results Analytical validation established analyte stability as well as acceptable performance characteristics. The test showed 100% specificity and 100% sensitivity to differentiate prostate cancer cases from healthy individuals in the case control study and 91.2% sensitivity and 100% specificity to differentiate prostate cancers from benign prostate conditions in the prospective clinical study. Conclusions The test accurately detects PrAD‐CTCs with high sensitivity and specificity irrespective of stage, serum PSA or Gleason score, which translates into low risks of false negatives or overdiagnosis. The high accuracy of the test could offer advantages over PSA based prostate cancer detection

    Accurate Screening for Early-Stage Breast Cancer by Detection and Profiling of Circulating Tumor Cells

    No full text
    Background: The early detection of breast cancer (BrC) is associated with improved survival. We describe a blood-based breast cancer detection test based on functional enrichment of breast-adenocarcinoma-associated circulating tumor cells (BrAD-CTCs) and their identification via multiplexed fluorescence immunocytochemistry (ICC) profiling for GCDFP15, GATA3, EpCAM, PanCK, and CD45 status. Methods: The ability of the test to differentiate BrC cases (N = 548) from healthy women (N = 9632) was evaluated in a case–control clinical study. The ability of the test to differentiate BrC cases from those with benign breast conditions was evaluated in a prospective clinical study of women (N = 141) suspected of BrC. Results: The test accurately detects BrAD-CTCs in breast cancers, irrespective of age, ethnicity, disease stage, grade, or hormone receptor status. Analytical validation established the high accuracy and reliability of the test under intended use conditions. The test detects and differentiates BrC cases from healthy women with 100% specificity and 92.07% overall sensitivity in a case–control study. In a prospective clinical study, the test shows 93.1% specificity and 94.64% overall sensitivity in differentiating breast cancer cases (N = 112) from benign breast conditions (N = 29). Conclusion: The findings reported in this manuscript support the clinical potential of this test for blood-based BrC detection

    Development and validation of a multigene variant profiling assay to guide targeted and immuno therapy selection in solid tumors.

    No full text
    We present data on analytical validation of the multigene variant profiling assay (CellDx) to provide actionable indications for selection of targeted and immune checkpoint inhibitor (ICI) therapy in solid tumors. CellDx includes Next Generation Sequencing (NGS) profiling of gene variants in a targeted 452-gene panel as well as status of total Tumor Mutation Burden (TMB), Microsatellite instability (MSI), Mismatch Repair (MMR) and Programmed Cell Death-Ligand 1 (PD-L1) respectively. Validation parameters included accuracy, sensitivity, specificity and reproducibility for detection of Single Nucleotide Alterations (SNAs), Copy Number Alterations (CNAs), Insertions and Deletions (Indels), Gene fusions, MSI and PDL1. Cumulative analytical sensitivity and specificity of the assay were 99.03 (95% CI: 96.54-99.88) and 99.23% (95% CI: 98.54% - 99.65%) respectively with 99.20% overall Accuracy (95% CI: 98.57% - 99.60%) and 99.7% Precision based on evaluation of 116 reference samples. The clinical performance of CellDx was evaluated in a subsequent analysis of 299 clinical samples where 861 unique mutations were detected of which 791 were oncogenic and 47 were actionable. Indications in MMR, MSI and TMB for selection of ICI therapies were also detected in the clinical samples. The high specificity, sensitivity, accuracy and reproducibility of the CellDx assay is suitable for clinical application for guiding selection of targeted and immunotherapy agents in patients with solid organ tumors
    corecore