6 research outputs found

    Effects of plant growth regulators on callogenesis and embryogenesis in sarnav and desiree potato (Solanum tuberosum L.) varieties

    Get PDF
    Somatic embryos play a pivotal role in the production of high-quality potatoes and seed breeding. This study focused on determining the concentrations of 1-naphthaleneacetic acid (NAA) and 6-benzyl amino purine (BAP) in the formation of callus tissue and callus induction. Our goal was to assess the efficiency of potato explants with the highest potential for somatic embryo production. To achieve this, we cultivated Sarnav and Desiree potato varieties under in vitro tissue culture conditions, utilizing the obtained tissue cultures for subsequent experiments. The MS nutrient media were enriched with NAA and BAP at ratios of 1.5: 1, 1: 1.5, and 1: 1 mg/L, along with NAA concentrations of 1.5, 1, or 2 mg/L. Somatic embryogenesis experiments were conducted using various MS nutrient media, enriched with BAP and GA3 at concentrations of 1: 0.5, 0.4: 0.1, 0.5: 0.2, and 0.1: 0.1 mg/L of plant growth regulators. During the course of the study, diverse callus formations were observed in both leaf and internodal stem explants. Among the nutrient media, the M2 medium enriched with 1: 1.5 mg/L of NAA and BAP yielded the highest callus formation rates: 92% for the Desiree variety and 100% for the Sarnav variety, specifically in internodal stem explants. Notably, the index of embryo formation in leaf explants selected for somatic embryogenesis within the SE4 medium was 70% for the Sarnav variety and 65% for the Desiree variety. The inclusion of BAP and GA3 at a ratio of 0.1: 0.1 mg/l in the SE4 nutrient medium resulted in somatic embryogenesis in 80% of calli for the Sarnav variety and 78% for the Desiree variety. These findings underscore the potential for regenerating plants through somatic embryogenesis in the Sarnav potato variety, a significant development with implications for genetic transformation studies involving this particular variety

    Chemical composition and biological activity of seed oil of amaranth varieties

    No full text
    The work is devoted to study of seed oil composition of amaranth varieties: Kharkov, Lera, Andijan and Helios, acclimatized in Uzbekistan. We demonstrated the possibility of using reversed-phase HPLC using a refractometric detector, which allows simultaneous determination of squalene and triacylglycerides in plant seeds and determining the authenticity of amaranth oils. Established seed oiliness ranged from 6.39 to 7.81 % of the initial mass. Amaranth oil samples contained quite large amount of unsaturated fatty acids 72.72 – 73.28 %, 1.17 % of which is omega-3-alpha-linolenic acid. The squalene content in the seeds ranged from 0.35 % to 0.55 %. It was established that the squalene content in oils obtained by extraction is greater than the one obtained by cold pressing. In the triacylglyceride composition of the investigated cold-pressed and extracted oils, no significant differences were found

    A review of approaches to enhance salt stress tolerance in cotton by genetic engineering

    No full text
    Due to climate change, deserts are expanding, water reservoirs are drying, soil erosion is becoming more serious, and salinity areas are expanding worldwide. Among these disasters, soil salinization is one of the serious issues that affect agricultural production, with significant effects on plant development. Although plants have a solid adaptation to severe environmental conditions, their vulnerability to some abiotic stresses is still preserved in the plant genome. Cotton is a salt stress-tolerant crop among other main cash crops. However, its tolerance is limited in overwatered soil conditions or water-deficient soil. Several research investigations have been carried out to date to better understand salinity stress responses in various cotton species. The accumulation of salt due to irrigation-dependent practices exerts an adverse impact on crop productivity. However, this deleterious effect can be mitigated through a comprehensive understanding of the mechanisms by which certain plants flourish under saline conditions. Over the past few decades, there has been a notable augmentation in mechanistic comprehension, leading to the initiation of discovery-oriented methodologies aimed at discerning the genetic determinants of salt tolerance. Recent studies are showing the results of the manipulation of some important genes and proteins for salt tolerance using modern approaches. The identification of salt-resistance genes from salt-tolerant germplasm resources plays an essential role in improving the yield of cotton in saline soils. In this paper, we reviewed what has been achieved in cotton in terms of the development of its salt tolerance using genetic engineering
    corecore