6 research outputs found

    Image Analysis for Contrast Enhanced Ultrasound Carotid Plaque Imaging

    Get PDF
    __Abstract__ Intraplaque neovascularization (IPN) has been presented as an important biomarker for progressive atherosclerotic disease and plaque vulnerability in several pathological studies. Therefore, quantification of IPN may allow early prediction of plaque at risk of rupture and thus prevention of future cardiovascular events such as stroke. Contrast enhanced ultrasound (CEUS) enables us to detect and visualize IPN by use of ultrasound contrast agents. So, the degree of IPN can potentially be measured by quantitative imaging biomarkers derived from CEUS. Since quantification tools for IPN are scarce, so far mainly visual IPN scoring on CEUS clips has been used to assess IPN, which is subjective and tedious. Currently available commercial tools for contrast quantification, e.g. QLAB region of interest (ROI) quantification tool (Philips Medical Systems, Bothell, USA) and VueBox (Bracco Suisse SA, Geneva, Switzerland), are not suitable for quantitative analysis of IPN. These commercial quantification tools have been developed mainly for time intensity curve analysis (TIC) of large organs such as heart, liver and prostate, not for plaques. Plaques are very small and intermittently perfused. Therefore, the perfusion characteristics of plaques are quite different from those of large organs and TIC analysis as applied in large well-perfused organs is not applicable. Some IPN quantification approaches have been reported but they suffer from a number of limitations such as imaging artifacts and no or imperfect motion compensation. In this thesis work, we avoided the known limitations of IPN quantification methods reported in previous studies and developed and evaluated specialized IPN analysis tools for carotid CEUS image sequences

    Quantification of bound microbubbles in ultrasound molecular imaging

    Get PDF
    Molecular markers associated with diseases can be visualized and quantified noninvasively with targeted ultrasound contrast agent (t-UCA) consisting of microbubbles (MBs) that can bind to specific molecular targets. Techniques used for quantifying t-UCA assume that all unbound MBs are taken out of the blood pool few minutes after injection and only MBs bound to the molecular markers remain. However, differences in physiology, diseases, and experimental conditions can increase the longevity of unbound MBs. In such conditions, unbound MBs will falsely be quantified as bound MBs. We have developed a novel technique to distinguish and classify bound from unbound MBs. In the post-processing steps, first, tissue motion was compensated using block-matching (BM) techniques. To preserve only stationary contrast signals, a minimum intensity projection (MinIP) or 20th-percentile intensity projection (PerIP) was applied. The after-flash MinIP or PerIP was subtracted from the before-flash MinIP or PerIP. In this way, tissue artifacts in contrast images were suppressed. In the next step, bound MB candidates were detected. Finally, detected objects were tracked to classify the candidates as unbound or bound MBs based on their displacement. This technique was validated in vitro, followed by two in vivo experiments in mice. Tumors (n = 2) and salivary glands of hypercholesterolemic mice (n = 8) were imaged using a commercially available scanner. Boluses of 100 μL of a commercially available t-UCA targeted to angiogenesis markers and untargeted control UCA were injected separately. Our results show considerable reduction in misclassification of unbound MBs as bound ones. Using our method, the ratio of bound MBs in salivary gland for images with targeted UCA versus control UCA was improved by up to two times compared with unprocessed images

    Lumen segmentation and motion estimation in B-mode and contrast-enhanced ultrasound images of the carotid artery in patients with atherosclerotic plaque

    No full text
    In standard B-mode ultrasound (BMUS), segmentation of the lumen of atherosclerotic carotid arteries and studying the lumen geometry over time are difficult owing to irregular lumen shapes, noise, artifacts, and echolucent plaques. Contrast enhanced ultrasound (CEUS) improves lumen visualization, but lumen segmentation remains challenging owing to varying intensities, CEUS-specific artifacts and lack of tissue visualization. To overcome these challenges, we propose a novel method using simultaneously acquired BMUS and CEUS image sequences. Initially, the method estimates nonrigid motion (NME) from the image sequences, using intensity-based image registration. The motion-compensated image sequence is then averaged to obtain a single 'epitome' image with improved signal-to-noise ratio. The lumen is segmented from the epitome image through an intensity joint-histogram classification and a graph-based segmentation. NME was validated by comparing displacements with manual annotations in 11 carotids. The average root mean square error (RMSE) was 112 73~μm. Segmentation results were validated against manual delineations in the epitome images of two different datasets, respectively containing 11 (RMSE 191 43~μm) and 10 (RMSE 351 176~μm) carotids. From the deformation fields, we derived arterial distensibility with values comparable to th

    Artificial Intelligence (AI)-Empowered Echocardiography Interpretation: A State-of-the-Art Review

    No full text
    Echocardiography (Echo), a widely available, noninvasive, and portable bedside imaging tool, is the most frequently used imaging modality in assessing cardiac anatomy and function in clinical practice. On the other hand, its operator dependability introduces variability in image acquisition, measurements, and interpretation. To reduce these variabilities, there is an increasing demand for an operator- and interpreter-independent Echo system empowered with artificial intelligence (AI), which has been incorporated into diverse areas of clinical medicine. Recent advances in AI applications in computer vision have enabled us to identify conceptual and complex imaging features with the self-learning ability of AI models and efficient parallel computing power. This has resulted in vast opportunities such as providing AI models that are robust to variations with generalizability for instantaneous image quality control, aiding in the acquisition of optimal images and diagnosis of complex diseases, and improving the clinical workflow of cardiac ultrasound. In this review, we provide a state-of-the art overview of AI-empowered Echo applications in cardiology and future trends for AI-powered Echo technology that standardize measurements, aid physicians in diagnosing cardiac diseases, optimize Echo workflow in clinics, and ultimately, reduce healthcare costs

    Fully automated carotid plaque segmentation in combined contrast-enhanced and B-mode ultrasound

    No full text
    Carotid plaque segmentation in B-mode ultrasound (BMUS) and contrast-enhanced ultrasound (CEUS) is crucial to the assessment of plaque morphology and composition, which are linked to plaque vulnerability. Segmentation in BMUS is challenging because of noise, artifacts and echo-lucent plaques. CEUS allows better delineation of the lumen but contains artifacts and lacks tissue information. We describe a method that exploits the combined information from simultaneously acquired BMUS and CEUS images. Our method consists of non-rigid motion estimation, vessel detection, lumen-intima segmentation and media-adventitia segmentation. The evaluation was performed in training (n=20 carotids) and test (n=28) data sets by comparison with manua

    Joint intensity-and-point based registration of free-hand B-mode ultrasound and MRI of the carotid artery

    No full text
    Purpose: To introduce a semiautomatic algorithm to perform the registration of free-hand B-Mode ultrasound (US) and magnetic resonance imaging (MRI) of the carotid artery. Methods: The authors' approach combines geometrical features and intensity information. The only user interaction consists of placing three seed points in US and MRI. First, the lumen centerlines are used as landmarks for point based registration. Subsequently, in a joint optimization the distance between centerlines and the dissimilarity of the image intensities is minimized. Evaluation is performed in left and right carotids from six healthy volunteers and five patients with atherosclerosis. For the validation, the authors measure the Dice similarity coefficient (DSC) and the mean surface distance (MSD) between carotid lumen segmentations in US and MRI after registration. The effect of several design parameters on the registration accuracy is investigated by an exhaustive search on a training set of five volunteers and three patients. The optimum configuration is validated on the remaining images of one volunteer and two patients. Results: On the training set, the authors achieve an average DSC of 0.74 and a MSD of 0.66 mm on volunteer data. For the patient data, the authors obtain a DSC of 0.77 and a MSD of 0.69 mm. In the independent set composed of patient and volunteer data, the DSC is 0.69 and the MSD is 0.87 mm. The experiments with different design parameters show that nonrigid registration outperforms rigid registration, and that the combination of intensity and point information is superior to approaches that use intensity or points only. Conclusions: The proposed method achieves an accurate registration of US and MRI, and may thus enable multimodal analysis of the carotid plaque
    corecore