32 research outputs found
CIG-DB: the database for human or mouse immunoglobulin and T cell receptor genes available for cancer studies
<p>Abstract</p> <p>Background</p> <p>Immunoglobulin (IG or antibody) and the T-cell receptor (TR) are pivotal proteins in the immune system of higher organisms. In cancer immunotherapy, the immune responses mediated by tumor-epitope-binding IG or TR play important roles in anticancer effects. Although there are public databases specific for immunological genes, their contents have not been associated with clinical studies. Therefore, we developed an integrated database of IG/TR data reported in cancer studies (the Cancer-related Immunological Gene Database [CIG-DB]).</p> <p>Description</p> <p>This database is designed as a platform to explore public human and murine IG/TR genes sequenced in cancer studies. A total of 38,308 annotation entries for IG/TR proteins were collected from GenBank/DDBJ/EMBL and the Protein Data Bank, and 2,740 non-redundant corresponding MEDLINE references were appended. Next, we filtered the MEDLINE texts by MeSH terms, titles, and abstracts containing keywords related to cancer. After we performed a manual check, we classified the protein entries into two groups: 611 on cancer therapy (Group I) and 1,470 on hematological tumors (Group II). Thus, a total of 2,081 cancer-related IG and TR entries were tabularized. To effectively classify future entries, we developed a computational method based on text mining and canonical discriminant analysis by parsing MeSH/title/abstract words. We performed a leave-one-out cross validation for the method, which showed high accuracy rates: 94.6% for IG references and 94.7% for TR references. We also collected 920 epitope sequences bound with IG/TR. The CIG-DB is equipped with search engines for amino acid sequences and MEDLINE references, sequence analysis tools, and a 3D viewer. This database is accessible without charge or registration at <url>http://www.scchr-cigdb.jp/</url>, and the search results are freely downloadable.</p> <p>Conclusions</p> <p>The CIG-DB serves as a bridge between immunological gene data and cancer studies, presenting annotation on IG, TR, and their epitopes. This database contains IG and TR data classified into two cancer-related groups and is able to automatically classify accumulating entries into these groups. The entries in Group I are particularly crucial for cancer immunotherapy, providing supportive information for genetic engineering of novel antibody medicines, tumor-specific TR, and peptide vaccines.</p
Clinical response in Japanese metastatic melanoma patients treated with peptide cocktail-pulsed dendritic cells
BACKGROUND: Metastatic, chemotherapy-resistant melanoma is an intractable cancer with a very poor prognosis. As to immunotherapy targeting metastatic melanoma, HLA-A2(+ )patients were mainly enrolled in the study in Western countries. However, HLA-A24(+ )melanoma patients-oriented immunotherapy has not been fully investigated. In the present study, we investigated the effect of dendritic cell (DC)-based immunotherapy on metastatic melanoma patients with HLA-A2 or A24 genotype. METHODS: Nine cases of metastatic melanoma were enrolled into a phase I study of monocyte-derived dendritic cell (DC)-based immunotherapy. HLA-genotype analysis revealed 4 cases of HLA-A*0201, 1 of A*0206 and 4 of A*2402. Enriched monocytes were obtained using OptiPrep™ from leukapheresis products, and then incubated with GM-CSF and IL-4 in a closed serum-free system. After pulsing with a cocktail of 5 melanoma-associated synthetic peptides (gp100, tyrosinase, MAGE-2, MAGE-3 and MART-1 or MAGE-1) restricted to HLA-A2 or A24 and KLH, cells were cryopreserved until used. Finally, thawed DCs were washed and injected subcutaneously (s.c.) into the inguinal region in a dose-escalation manner. RESULTS: The mean percentage of DCs rated as lin(-)HLA-DR(+ )in melanoma patients was 46.4 ± 15.6 %. Most of DCs expressed high level of co-stimulatory molecules and type1 phenotype (CD11c(+)HLA-DR(+)), while a moderate number of mature DCs with CD83 and CCR7 positive were contained in DC products. DC injections were well tolerated except for transient liver dysfunction (elevation of transaminases, Grade I-II). All 6 evaluable cases except for early PD showed positive immunological responses to more than 2 melanoma peptides in an ELISPOT assay. Two representative responders demonstrated strong HLA-class I protein expression in the tumor and very high scores of ELISPOT that might correlate to the regression of metastatic tumors. Clinical response through DC injections was as follows : 1CR, 1 PR, 1SD and 6 PD. All 59 DC injections in the phase I study were tolerable in terms of safety, however, the maximal tolerable dose of DCs was not determined. CONCLUSIONS: These results suggested that peptide cocktail-treated DC-based immunotherapy had the potential for utilizing as one of therapeutic tools against metastatic melanoma in Japan
FXYD3 functionally demarcates an ancestral breast cancer stem cell subpopulation with features of drug-tolerant persisters
乳がんの再発を起こす原因細胞を解明. 京都大学プレスリリース. 2023-11-16.The heterogeneity of cancer stem cells (CSCs) within tumors presents a challenge in therapeutic targeting. To decipher the cellular plasticity that fuels phenotypic heterogeneity, we undertook single-cell transcriptomics analysis in triple-negative breast cancer (TNBC) to identify subpopulations in CSCs. We found a subpopulation of CSCs with ancestral features that is marked by FXYD domain–containing ion transport regulator 3 (FXYD3), a component of the Na⁺/K⁺ pump. Accordingly, FXYD3⁺ CSCs evolve and proliferate, while displaying traits of alveolar progenitors that are normally induced during pregnancy. Clinically, FXYD3⁺ CSCs were persistent during neoadjuvant chemotherapy, hence linking them to drug-tolerant persisters (DTPs) and identifying them as crucial therapeutic targets. Importantly, FXYD3⁺ CSCs were sensitive to senolytic Na⁺/K⁺ pump inhibitors, such as cardiac glycosides. Together, our data indicate that FXYD3⁺ CSCs with ancestral features are drivers of plasticity and chemoresistance in TNBC. Targeting the Na⁺/K⁺ pump could be an effective strategy to eliminate CSCs with ancestral and DTP features that could improve TNBC prognosis
Sutureless microvascular anastomosis assisted by an expandable shape-memory alloy stent.
Vascular anastomosis is the highlight of cardiovascular, transplant, and reconstructive surgery, which has long been performed by hand using a needle and suture. However, anastomotic thrombosis occurs in approximately 0.5-10% of cases, which can cause serious complications. To improve the surgical outcomes, attempts to develop devices for vascular anastomosis have been made, but they have had limitations in handling, cost, patency rate, and strength at the anastomotic site. Recently, indwelling metal stents have been greatly improved with precise laser metalwork through programming technology. In the present study, we designed a bare metal stent, Microstent, that was constructed by laser machining of a shape-memory alloy, NiTi. An end-to-end microvascular anastomosis was performed in SD rats by placing the Microstent at the anastomotic site and gluing the junction. The operation time for the anastomosis was significantly shortened using Microstent. Thrombus formation, patency rate, and blood vessel strength in the Microstent anastomosis were superior or comparable to hand-sewn anastomosis. The results demonstrated the safety and effectiveness, as well as the operability, of the new method, suggesting its great benefit for surgeons by simplifying the technique for microvascular anastomosis
Calcium Wave Promotes Cell Extrusion
When oncogenic transformation or apoptosis occurs within epithelia, the harmful or dead cells are apically extruded from tissues to maintain epithelial homeostasis. However, the underlying molecular mechanism still remains elusive. In this study, we first show, using mammalian cultured epithelial cells and zebrafish embryos, that prior to apical extrusion of RasV12-transformed cells, calcium wave occurs from the transformed cell and propagates across the surrounding cells. The calcium wave then triggers and facilitates the process of extrusion. IP3 receptor, gap junction, and mechanosensitive calcium channel TRPC1 are involved in calcium wave. Calcium wave induces the polarized movement of the surrounding cells toward the extruding transformed cells. Furthermore, calcium wave facilitates apical extrusion, at least partly, by inducing actin rearrangement in the surrounding cells. Moreover, comparable calcium propagation also promotes apical extrusion of apoptotic cells. Thus, calcium wave is an evolutionarily conserved, general regulatory mechanism of cell extrusion