27 research outputs found

    Cardiac Reshaping Net for Dilated Cardiomyopathy

    Get PDF
    Dilated cardiomyopathy (DCM) is an intractable disease that progressively worsens with cardiac enlargement and heart failure. There are approximately 20,000 patients designated with intractable disease who have moderate or severe heart failure symptoms even with appropriate medical treatment, making it the most common target disease for heart transplantation in Japan. Sixty percent of designated DCM patients are over the age of 60. If we can extend their healthy life expectancy by 5 to 10 years, we can reduce the number of patients who are candidates for heart transplantation. We have developed a patient-specific cardiac reshaping net (PS-CRN) to prevent progressive cardiac enlargement (=cardiac remodeling), which is the major factor in worsening heart failure. We have conducted three first-in-human clinical trials. The past and present of the “cardiac support net therapy” will be reviewed

    Impact of cardiac support device combined with slow-release prostacyclin agonist in a canine ischemic cardiomyopathy model

    Get PDF
    BackgroundThe cardiac support device supports the heart and mechanically reduces left ventricular (LV) diastolic wall stress. Although it has been shown to halt LV remodeling in dilated cardiomyopathy, its therapeutic efficacy is limited by its lack of biological effects. In contrast, the slow-release synthetic prostacyclin agonist ONO-1301 enhances reversal of LV remodeling through biological mechanisms such as angiogenesis and attenuation of fibrosis. We therefore hypothesized that ONO-1301 plus a cardiac support device might be beneficial for the treatment of ischemic cardiomyopathy.MethodsTwenty-four dogs with induced anterior wall infarction were assigned randomly to 1 of 4 groups at 1 week postinfarction as follows: cardiac support device alone, cardiac support device plus ONO-1301 (hybrid therapy), ONO-1301 alone, or sham control.ResultsAt 8 weeks post-infarction, LV wall stress was reduced significantly in the hybrid therapy group compared with the other groups. Myocardial blood flow, measured by positron emission tomography, and vascular density were significantly higher in the hybrid therapy group compared with the cardiac support device alone and sham groups. The hybrid therapy group also showed the least interstitial fibrosis, the greatest recovery of LV systolic and diastolic functions, assessed by multidetector computed tomography and cardiac catheterization, and the lowest plasma N-terminal pro-B-type natriuretic peptide levels (P < .05).ConclusionsThe combination of a cardiac support device and the prostacyclin agonist ONO-1301 elicited a greater reversal of LV remodeling than either treatment alone, suggesting the potential of this hybrid therapy for the clinical treatment of ischemia-induced heart failure

    Seasonal pigment fluctuation in diploid and polyploid Arabidopsis revealed by machine learning-based phenotyping method PlantServation

    Full text link
    Long-term field monitoring of leaf pigment content is informative for understanding plant responses to environments distinct from regulated chambers but is impractical by conventional destructive measurements. We developed PlantServation, a method incorporating robust image-acquisition hardware and deep learning-based software that extracts leaf color by detecting plant individuals automatically. As a case study, we applied PlantServation to examine environmental and genotypic effects on the pigment anthocyanin content estimated from leaf color. We processed >4 million images of small individuals of four Arabidopsis species in the field, where the plant shape, color, and background vary over months. Past radiation, coldness, and precipitation significantly affected the anthocyanin content. The synthetic allopolyploid A. kamchatica recapitulated the fluctuations of natural polyploids by integrating diploid responses. The data support a long-standing hypothesis stating that allopolyploids can inherit and combine the traits of progenitors. PlantServation facilitates the study of plant responses to complex environments termed "in natura"

    Selective depletion of mouse kidney proximal straight tubule cells causes acute kidney injury

    Get PDF
    The proximal straight tubule (S3 segment) of the kidney is highly susceptible to ischemia and toxic insults but has a remarkable capacity to repair its structure and function. In response to such injuries, complex processes take place to regenerate the epithelial cells of the S3 segment; however, the precise molecular mechanisms of this regeneration are still being investigated. By applying the “toxin receptor mediated cell knockout” method under the control of the S3 segment-specific promoter/enhancer, Gsl5, which drives core 2 ÎČ-1,6-N-acetylglucosaminyltransferase gene expression, we established a transgenic mouse line expressing the human diphtheria toxin (DT) receptor only in the S3 segment. The administration of DT to these transgenic mice caused the selective ablation of S3 segment cells in a dose-dependent manner, and transgenic mice exhibited polyuria containing serum albumin and subsequently developed oliguria. An increase in the concentration of blood urea nitrogen was also observed, and the peak BUN levels occurred 3–7 days after DT administration. Histological analysis revealed that the most severe injury occurred in the S3 segments of the proximal tubule, in which tubular cells were exfoliated into the tubular lumen. In addition, aquaporin 7, which is localized exclusively to the S3 segment, was diminished. These results indicate that this transgenic mouse can suffer acute kidney injury (AKI) caused by S3 segment-specific damage after DT administration. This transgenic line offers an excellent model to uncover the mechanisms of AKI and its rapid recovery

    A Newly Cloned ClC-3 Isoform, ClC-3d, as well as ClC-3a Mediates Cd2+-Sensitive Outwardly Rectifying Anion Currents

    No full text
    Background: ClC-3, a member of the ClC family, is predicted to have six isoforms, ClC-3a to -3f, with distinct N- and C-terminal amino acid sequences. There have been conflicting reports on the properties of ClC-3a (also known as the N-terminal short form of ClC-3) and ClC-3b (the N-terminal long form of ClC-3) as plasmalemmal Cl- channels. Meanwhile, little is known about other isoforms. The amino acid sequence of ClC-3d (a C-terminal variant of the short form) listed in the NCBI database was derived from the genomic sequence, but there has been no experimental evidence for the mRNA. Methods: PCR-cloning was made to obtain the full coding region of ClC-3d from mouse liver. Its molecular expression on the plasma membrane was microscopically examined in HEK293T cells transfected with GFP-tagged ClC-3d. Its functional plasmalemmal expression and the properties of currents were studies by whole-cell recordings in the cells transfected with ClC-3d. Results: The cloned ClC-3d was found to be the only isoform which has an N-terminal amino acid sequence identical to ClC-3a. When introduced into HEK293T cells, a minor fraction of exogenous ClC-3d proteins was detected at the plasma membrane, and activation of anion currents was observed at neutral pH under normotonic conditions. The properties of ClC-3d currents were found to be shared by ClC-3a-mediated currents. Also, both ClC-3d and -3a currents were found to be sensitive to Cd2+. ClC-3d overexpression never affected the endogenous activity of acid- or swelling-activated anion channels. Conclusion: We thus conclude that plasmalemmal ClC-3d, like ClC-3a, mediates Cd2+-sensitive outwardly rectifying anion currents and that ClC-3d is distinct from the molecular entities of acid- and volume-sensitive anion channels

    Identification of novel serum autoantibodies against EID3 in non-functional pancreatic neuroendocrine tumors

    Get PDF
    Pancreatic neuroendocrine tumors (pNETs) are relatively rare heterogenous tumors, comprising only 1-2% of all pancreatic neoplasms. The majority of pNETs are non-functional tumors (NF-pNETs) that do not produce hormones, and as such, do not cause any hormone-related symptoms. As a result, these tumors are often diagnosed at an advanced stage because patients do not present with specific symptoms. Although tumor markers are used to help diagnosis and predict some types of cancers, chromogranin A, a widely used tumor marker of pNETs, has significant limitations. To identify novel NF-pNET-associated antigens, we performed serological identification of antigens by recombinant cDNA expression cloning (SEREX) and identified five tumor antigens (phosphatase and tensin homolog, EP300-interacting inhibitor of differentiation 3 [EID3], EH domain-containing protein 1, galactoside-binding soluble 9, and BRCA1-associated protein). Further analysis using the AlphaLISA (R) immunoassay to compare serum antibody levels revealed that antibody levels against the EID3 antigen was significantly higher in the patient group than in the healthy donor group (n = 25, both groups). In addition, higher serum anti-EID3 antibody levels in NF-pNET patients correlated with shorter disease-free survival. The AUC calculated by ROC analysis was 0.784 with moderate diagnostic accuracy. In conclusion, serum anti-EID3 antibody levels may be useful as a tumor marker for prediction of tumor recurrence in NF-pNETs
    corecore