3 research outputs found

    Fatty Acid Amides Synthesized from Andiroba Oil (Carapa guianensis Aublet.) Exhibit Anticonvulsant Action with Modulation on GABA-A Receptor in Mice: A Putative Therapeutic Option

    No full text
    Epilepsy is a chronic neurological disease characterized by excessive neuronal activity leading to seizure; about 30% of affected patients suffer from the refractory and pharmacoresistant form of the disease. The anticonvulsant drugs currently used for seizure control are associated with adverse reactions, making it important to search for more effective drugs with fewer adverse reactions. There is increasing evidence that endocannabinoids can pharmacologically modulate action against seizure and antiepileptic disorders. Therefore, the objective of this study is to investigate the anticonvulsant effects of fatty acid amides (FAAs) in a pentylenetetrazole (PTZ)-induced seizure model in mice. FAAs (FAA1 and FAA2) are obtained from Carapa guianensis oil by biocatalysis and are characterized by Fourier Transform Infrared Analysis (FT-IR) and Gas Chromatography-Mass Spectrometry (GC-MS). Only FAA1 is effective in controlling the increased latency time of the first myoclonic jerk and in significantly decreasing the total duration of tonic-clonic seizures relative to the pentylenetetrazol model. Also, electrocortical alterations produced by pentylenetetrazol are reduced when treated by FAA1 that subsequently decreased wave amplitude and energy in Beta rhythm. The anticonvulsant effects of FAA1 are reversed by flumazenil, a benzodiazepine antagonist on Gamma-Aminobutyric Acid-A (GABA-A) receptors, indicating a mode of action via the benzodiazepine site of these receptors. To conclude, the FAA obtained from C. guianensis oil is promising against PTZ-induced seizures

    Unmasking Hidden Risks: The Surprising Link Between PDE5 Inhibitors and Seizure Susceptibility

    No full text
    <p><strong>BACKGROUND:</strong> Phosphodiesterase 5 inhibitors (PDE5i) are the first line treatment for erectile dysfunction; however, several articles and case reports have shown central nervous system effects, that can cause seizures in susceptible patients. This study aims to describe the changes caused by the use of Sildenafil and Tadalafil through the analysis of abnormalities expressed in the electrocorticogram (ECoG) of rats and evaluate the seizure threshold response and treatment of seizures with anticonvulsants.<strong> MATERIALS AND METHODS:</strong> The study used 108 rats (Wistar). Before surgery for electrode placement in dura mater, the animals were randomly separated into 3 experiments for electrocorticogram analysis. Experiment 1: ECoG response to using PD5i (Sildenafil 20mg/kg and Tadalafil 2.6mg/kg p.o.). Experiment 2: ECoG response to the use of PD5i in association with Pentylenetetrazole (PTZ - 30 mg/kg i.p.), a convulsive model. Experiment 3: ECoG response to anticonvulsant treatment (Phenytoin, Phenobarbital and Diazepam) of seizures induced by association IPDE5 + PTZ. All recordings were made thirty minutes after administration of the medication and analyzed for ten minutes, only once. We considered statistical significance level of *p<0.05, **p<0.01 and ***p < 0.001. <strong>RESULTS: </strong>After administration of Sildenafil and Tadalafil, there were increases in the power of recordings in the frequency bands in oscillations in alpha (p=0.0920) and beta (p=0.602) when compared to the control group (p<0.001). After the use of Sildenafil and Tadalafil associated with PTZ, greater potency was observed in the recordings during seizures (p<0.001), however, the Sildenafil group showed greater potency when compared to Tadalafil (p<0.05). Phenobarbital and Diazepam showed a better response in controlling discharges triggered by the association between proconvulsant drugs. <strong>CONCLUSIONS:</strong> PDE5i altered the ECoG recordings in the rats' motor cortexes, demonstrating cerebral asynchrony and potentiating the action of PTZ. These findings demonstrate that PDE5i can lower the seizure threshold.</p&gt
    corecore