23 research outputs found

    Impurity-Induced Antiferromagnetic Ordering in the Spin Gap System TlCuCl_3

    Full text link
    The magnetization measurements have been performed on the doped spin gap system TlCu_{1-x}Mg_xCl_3 with x <= 0.025. The parent compound TlCuCl_3 is a three-dimensional coupled spin dimer system with the excitation gap Delta/k_B = 7.7 K. The impurity-induced antiferromagnetic ordering was clearly observed. The easy axis lies in the (0,1,0) plane. It was found that the transition temperature increases with increasing Mg^{2+} concentration x, while the spin-flop transition field is almost independent of x. The magnetization curve suggests that the impurity-induced antiferromagnetic ordering coexists with the spin gap for x <= 0.017.Comment: 5 pages, 6 figures, revtex styl

    Random Bond Effect in the Quantum Spin System (Tl1x_{1-x}Kx_{x})CuCl3_3

    Full text link
    The effect of exchange bond randomness on the ground state and the field-induced magnetic ordering was investigated through magnetization measurements in the spin-1/2 mixed quantum spin system (Tl1x_{1-x}Kx_{x})CuCl3_3 for x<0.36x<0.36. Both parent compounds TlCuCl3_3 and KCuCl3_3 are coupled spin dimer systems, which have the singlet ground state with excitation gaps Δ/kB=7.7{\Delta}/k_{\rm B}=7.7 K and 31 K, respectively. Due to bond randomness, the singlet ground state turns into the magnetic state with finite susceptibility, nevertheless, the excitation gap remains. Field-induced magnetic ordering, which can be described by the Bose condensation of excited triplets, magnons, was observed as in the parent systems. The phase transition temperature is suppressed by the bond randomness. This behavior may be attributed to the localization effect.Comment: 19 pages, 7 figures, 12 eps files, revtex, will appear in PR

    Magnetic field-induced one-magnon Raman scattering in the magnon Bose-Einstein condensation phase of TlCuCl3_{3}

    Full text link
    We report the observation of the AgA_{\rm g}-symmetric one-magnon Raman peak in the magnon Bose-Einstein condensation phase of TlCuCl3_{3}. Its Raman shift traces the one-magnon energy at the magnetic Γ\Gamma point, and its intensity is proportional to the squared transverse magnetization. The appearance of the one-magnon Raman scattering originates from the exchange magnon Raman process and reflects the change of the magnetic-state symmetry. Using the bond-operator representation, we theoretically clarify the Raman selection rules, being consistent with the experimental results.Comment: 6 pages, 4 figure

    Impurity-induced magnetic order in the mixture of two spin gap systems (CH3)2CHNH3CuCl3 and (CH3)2CHNH3CuBr3

    Full text link
    The ground state of the solid solution of the two spin gap systems (CH3)2CHNH3CuCl3 and (CH3)2CHNH3CuBr3 has been investigated by 1H-NMR. The existence of a magnetic ordering in the sample with the Cl-content x=0.85 was clearly demonstrated by a drastic splitting in a resonance line at low temperatures below TN=13.5K. The observed NMR spectra in the ordered state was qualitatively consistent with the simple antiferromagnetic state.Comment: QuBS200

    Stretching Actin Filaments within Cells Enhances their Affinity for the Myosin II Motor Domain

    Get PDF
    To test the hypothesis that the myosin II motor domain (S1) preferentially binds to specific subsets of actin filaments in vivo, we expressed GFP-fused S1 with mutations that enhanced its affinity for actin in Dictyostelium cells. Consistent with the hypothesis, the GFP-S1 mutants were localized along specific portions of the cell cortex. Comparison with rhodamine-phalloidin staining in fixed cells demonstrated that the GFP-S1 probes preferentially bound to actin filaments in the rear cortex and cleavage furrows, where actin filaments are stretched by interaction with endogenous myosin II filaments. The GFP-S1 probes were similarly enriched in the cortex stretched passively by traction forces in the absence of myosin II or by external forces using a microcapillary. The preferential binding of GFP-S1 mutants to stretched actin filaments did not depend on cortexillin I or PTEN, two proteins previously implicated in the recruitment of myosin II filaments to stretched cortex. These results suggested that it is the stretching of the actin filaments itself that increases their affinity for the myosin II motor domain. In contrast, the GFP-fused myosin I motor domain did not localize to stretched actin filaments, which suggests different preferences of the motor domains for different structures of actin filaments play a role in distinct intracellular localizations of myosin I and II. We propose a scheme in which the stretching of actin filaments, the preferential binding of myosin II filaments to stretched actin filaments, and myosin II-dependent contraction form a positive feedback loop that contributes to the stabilization of cell polarity and to the responsiveness of the cells to external mechanical stimuli

    Die Stellung der Locarno-Veträge im Sicherheitsszstem

    No full text
    目次 一 安全保障の形態 二 地域的協定としてのロカルノ諸條約 三 安全保障機構に於ける其の地位 四 保障方法と制裁の問

    海洋自由論の研究(二) : フーゴー・グロティウスの「自由海論」について

    No full text
    三 「自由海論」の成立 四 その國際法上の意義 五 「自由海論」と戦争竝に中立 六 結
    corecore