33 research outputs found

    Establishment of cell lines that exhibit pluripotency from miniature swine periodontal ligaments.

    Get PDF
    Objective: The periodontal ligament (PDL) is a fibrous connective tissue composed of heterogeneous cell types, including PDL fibroblasts. It is not clear whether cells within the PDL fibroblast population retain the potency to differentiate into other cell types. Design: In the present study, clonal cell lines, derived from Clawn miniature swine PDLs, were established by gene transfection for a human telomerase reverse transcriptase, and characterized. Results: These cell lines, denoted TesPDL1–4, had PDL fibroblasts that showed fibroblastic morphology and expressed procollagen α1(I), osteopontin, periostin and alkaline phosphatase mRNA. Under the specific culture conditions, TesPDL3 cells also have the ability to express CD31, vascular endothelial cadherin, von Willebrand factor, osteocalcin, and to form extracellular mineralized nodules. Conclusions: Our data indicate that TesPDL3 cells have unique properties of expressing several phenotype of fibroblasts, vascular endothelial cells and osteoblasts in cultures

    Photodynaic Therapy for Lung Cancers

    No full text

    AC Loss Properties of Laser-Scribed Multi-Filamentary GdBCO Coated Conductors with Artificial Pinning Centres

    Get PDF
    AbstractRE1Ba2Cu3O7-∂ (RE: Rare Earth, Gd, Y and so on) coated conductors have a large aspect ratio and also anisotropy in critical current density. For practical application of REBCO tapes, we evaluated Jc and ac loss properties in a wide range of temperature and magnetic field. The induced ac losses due to the perpendicular magnetic field to a tape face are considerably huge. Therefore, in case that REBCO coated conductors are applied electric power machines and devices, ac loss induced in the windings should amount to a great part of the total heat load. We proposed an ac loss reduction method, which is combined with a laser scribing technique and a special winding process into a multi–filamentary structure. Additionally, we are trying to enhance critical current density JC, by doping artificial pinning centre. In this study we investigated the ac loss properties of multi-filament structural GdBCO tapes with BZO nano–lods as artificial pinning centers. We measured ac losses of 5, 10, 20-filament GdBCO tapes by using a saddle-shaped pickup coil. Consequently we confirmed the ac loss decreased in inverse proportion to the number of filaments even in the GdBCO tapes with enhanced JC by introducing artificial pinning centers
    corecore