82 research outputs found

    Liganded Thyroid Hormone Receptor Inhibits Phorbol 12-O-Tetradecanoate-13-Acetate-Induced Enhancer Activity via Firefly Luciferase cDNA

    Get PDF
    Thyroid hormone receptor (TR) belongs to the nuclear hormone receptor (NHR) superfamily and regulates the transcription of its target genes in a thyroid hormone (T3)-dependent manner. While the detail of transcriptional activation by T3 (positive regulation) has been clarified, the mechanism of T3-dependent repression (negative regulation) remains to be determined. In addition to naturally occurring negative regulations typically found for the thyrotropin β gene, T3-bound TR (T3/TR) is known to cause artificial negative regulation in reporter assays with cultured cells. For example, T3/TR inhibits the transcriptional activity of the reporter plasmids harboring AP-1 site derived from pUC/pBR322-related plasmid (pUC/AP-1). Artificial negative regulation has also been suggested in the reporter assay with firefly luciferase (FFL) gene. However, identification of the DNA sequence of the FFL gene using deletion analysis was not performed because negative regulation was evaluated by measuring the enzymatic activity of FFL protein. Thus, there remains the possibility that the inhibition by T3 is mediated via a DNA sequence other than FFL cDNA, for instance, pUC/AP-1 site in plasmid backbone. To investigate the function of FFL cDNA as a transcriptional regulatory sequence, we generated pBL-FFL-CAT5 by ligating FFL cDNA in the 5' upstream region to heterologous thymidine kinase promoter in pBL-CAT5, a chloramphenicol acetyl transferase (CAT)-based reporter gene, which lacks pUC/AP-1 site. In kidney-derived CV1 and choriocarcinoma-derived JEG3 cells, pBL-FFL-CAT5, but not pBL-CAT5, was strongly activated by a protein kinase C activator, phorbol 12-O-tetradecanoate-13-acetate (TPA). TPA-induced activity of pBL-FFL-CAT5 was negatively regulated by T3/TR. Mutation of nt. 626/640 in FFL cDNA attenuated the TPA-induced activation and concomitantly abolished the T3-dependent repression. Our data demonstrate that FFL cDNA sequence mediates the TPA-induced transcriptional activity, which is inhibited by T3/TR

    Changes in expression levels of ERCC1, DPYD, and VEGFA mRNA after first-line chemotherapy of metastatic colorectal cancer: results of a multicenter study

    Get PDF
    Our previous study showed that administering oxaliplatin as first-line chemotherapy increased ERCC1 and DPD levels in liver colorectal cancers (CRCs) metastases. Second, whether the anti-VEGF monoclonal antibody bevacizumab alters tumoral VEGFA levels is unknown. We conducted this multicenter observational study to validate our previous findings on ERCC1 and DPD, and clarify the response of VEGFA expression to bavacizumab administration. 346 CRC patients with liver metastases were enrolled at 22 Japanese institutes. Resected liver metastases were available for 175 patients previously treated with oxaliplatin-based chemotherapy (chemotherapy group) and 171 receiving no previous chemotherapy (non-chemotherapy group). ERCC1, DPYD, and VEGFA mRNA levels were measured by real-time RT-PCR. ERCC1 mRNA expression was significantly higher in the chemotherapy group than in the non-chemotherapy group (P = 0.033), and were significantly correlated (Spearman\u27s correlation coefficient = 0.42; P < 0.0001). VEGFA expression level was higher in patients receiving bevacizumab (n = 51) than in those who did not (n = 251) (P = 0.007). This study confirmed that first-line oxaliplatin-based chemotherapy increases ERCC1 and DPYD expression levels, potentially enhancing chemosensitivity to subsequent therapy. We also found that bevacizumab induces VEGFA expression in tumor cells, suggesting a biologic rationale for extending bevacizumab treatment beyond first progression

    GATA2 Mediates Thyrotropin-Releasing Hormone-Induced Transcriptional Activation of the Thyrotropin β Gene

    Get PDF
    Thyrotropin-releasing hormone (TRH) activates not only the secretion of thyrotropin (TSH) but also the transcription of TSHβ and α-glycoprotein (αGSU) subunit genes. TSHβ expression is maintained by two transcription factors, Pit1 and GATA2, and is negatively regulated by thyroid hormone (T3). Our prior studies suggest that the main activator of the TSHβ gene is GATA2, not Pit1 or unliganded T3 receptor (TR). In previous studies on the mechanism of TRH-induced activation of the TSHβ gene, the involvements of Pit1 and TR have been investigated, but the role of GATA2 has not been clarified. Using kidney-derived CV1 cells and pituitary-derived GH3 and TαT1 cells, we demonstrate here that TRH signaling enhances GATA2-dependent activation of the TSHβ promoter and that TRH-induced activity is abolished by amino acid substitution in the GATA2-Zn finger domain or mutation of GATA-responsive element in the TSHβ gene. In CV1 cells transfected with TRH receptor expression plasmid, GATA2-dependent transactivation of αGSU and endothelin-1 promoters was enhanced by TRH. In the gel shift assay, TRH signal potentiated the DNA-binding capacity of GATA2. While inhibition by T3 is dominant over TRH-induced activation, unliganded TR or the putative negative T3-responsive element are not required for TRH-induced stimulation. Studies using GH3 cells showed that TRH-induced activity of the TSHβ promoter depends on protein kinase C but not the mitogen-activated protein kinase, suggesting that the signaling pathway is different from that in the prolactin gene. These results indicate that GATA2 is the principal mediator of the TRH signaling pathway in TSHβ expression

    Relationships between Fractionation Data in River Water and Watershed Characteristics

    No full text

    Packet Processing Architecture with Off-Chip Last Level Cache Using Interleaved 3D-Stacked DRAM

    No full text

    Study on Elemental Technologies for Creation of Healthcare Chip Fabricated on Polyethylene Terephthalate Plate

    Get PDF
    Elemental technologies have been studied to establish the healthcare chip which is an intelligent micro analytical system to detect human health markers from a trail of blood. A two steps process for deep quartz dry-etching was discussed in order to overcome the issues of concave-shaped defects at the bottom of grooves. A coating with 2-methacryloyloxyethylphosphorylcholine (MPC) polymer was studied to suppress the adsorption of bio-substance onto the inner wall of the flow channel on chip and good bio-compatibility was achieved for suppression of protein adsorption and blood cell adhesion. A prototype of healthcare chip was fabricated on polyethylene terephthalate (PET) plate using a micro molding technique. Using this chip, the ion concentrations of pH, Na^+, K^+, Ca^ were successfully measured with embedded ion sensitive field effect transistors (ISFET's)
    corecore