98 research outputs found

    Confocal microphotoluminescence of InGaN-based light-emitting diodes

    Get PDF
    Spatially resolved photoluminescence (PL) of InGaN/GaN/AlGaN-based quantum-well-structured light-emitting diodes (LEDs) with a yellow-green light (530 nm) and an amber light (600 nm) was measured by using confocal microscopy. Submicron-scale spatial inhomogeneities of both PL intensities and spectra were found in confocal micro-PL images. We also found clear correlations between PL intensities and peak wavelength for both LEDs. Such correlations for yellow-green and amber LEDs were different from the reported correlations for blue or green LEDs. This discrepancy should be due to different diffusion, localization, and recombination dynamics of electron-hole pairs generated in InGaN active layers, and should be a very important property for influencing the optical properties of LEDs. In order to explain the results, we proposed a possible carrier dynamics model based on the carrier localization and partial reduction of the quantum confinement Stark effect depending on an indium composition in InGaN active layers. By using this model, we also considered the origin of the reduction of the emission efficiencies with a longer emission wavelength of InGaN LEDs with high indium composition

    Sphingosine 1-phosphate (S1P) inhibits monocyte–endothelial cell interaction by regulating of RhoA activity

    Get PDF
    AbstractRecent studies suggest that sphingosine 1-phosphate (S1P) protects against atherosclerosis. We assessed the effects of S1P on monocyte–endothelial interaction in the presence of inflammatory mediators. Pretreatment of THP-1 cells with S1P abolished Phorbol 12 myristate 13-acetate (PMA)-induced THP-1 cell adhesion to human umbilical vein endothelial cells (HUVECs). S1P inhibited PMA-induced activation of RhoA, but not PKCs. S1P activated p190Rho GTPase activation protein (GAP) only in the presence of PMA, suggesting an inhibitory effect of S1P and PMA to suppress RhoA. In conclusion, S1P inhibited monocyte–endothelial interactions by inhibiting RhoA activity which may explain its anti-atherogenic effects

    上顎の形態発生におけるWnt signaling pathwayの役割

    Get PDF
    Cleft lip with or without cleft palate (CLP) usually results from a failure of the medial nasal prominences to fuse with the lateral and maxillary prominences. This failure inhibits facial morphogenesis regulated by several major morphogenetic signaling pathways. We hypothesized that CLP results from the failure of the Wnt signaling pathway. To examine whether Wnt signaling can influences upper jaw development, we applied beads soaked with Dickkopf-1 (Dkk-1), Alsterpaullone (AL) or Wnt3a to the right side of the maxillary prominence of the chick embryo. The embryo showed a defect of the maxilla on the treated side, and skeletal staining revealed hypoplasia of the premaxilla and palatine bone as a result of Dkk-1-soaked bead implantation. 5-bromo-2'-deoxyuridine (BrdU)-positive cell numbers in the treated maxillary prominence were significantly lower at both 24 and 48 hr after implantation. Down-regulation of the expression of Bmp4, Tbx22, Sox9, and Barx1 was confirmed in the maxillary prominence treated with Dkk-1, which indicated that the deformity of the maxillary bone was controlled by gene targets of the Wnt signaling pathway. Expression of N-cadherin was seen immunohistochemically in the maxillary prominences of embryos at 6 hr and increased at 24 hr after AL treatment. Wnt signaling enhanced by AL or Wnt3a up-regulated the expression levels of Msx1, Bmp4, Tbx22, Sox9, and Barx1. Our data suggest that the Wnt signaling pathway regulates maxillary morphogenesis and growth through Bmp4, Tbx22, Sox9, and Barx1. Wnt signaling might regulate N-cadherin expression via Msx1, resulting in cell aggregation for osteochondrogenesis.博士(医学)・乙第1430号・令和元年6月26日© 2019 The Japan Society of Histochemistry and CytochemistryCopyright: © 2019 The author. This is an open access article distributed under the Creative Commons Attribution License(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, istribution, and reproduction in any medium, provided the original work is properly cited.J-STAGEへのリンク : http://dx.doi.org/10.1267/ahc.1803

    Taste receptor genes and renal function

    Get PDF
    Dysgeusia is not only associated with zinc deficiency but also with certain drugs or diseases, including diabetes and renal failure. It often lowers the patient’s quality of life and hinders access to proper nutrition. The underlying mechanism is unclear and there is a lack of awareness among patients. Here, we focused on lingual taste receptor gene expression in diabetes and elucidated the relationship between taste receptor gene expression and renal function. Forty-seven patients with diabetes and 10 healthy subjects (control group) were enrolled. Lingual foliate papillae were scraped and the derived cDNA was quantified by real-time polymerase chain reaction. Dysgeusia was assessed using SALSAVE®. All statistical analyses were performed using JMP® software 13. The expression of T1R1 and T1R2 was significantly upregulated in type 2 diabetes patients as compared with that in healthy subjects (P < 0.01) but did not change in type 1 diabetes patients. T1R3 expression positively correlated and Scnn1 expression negatively correlated with estimated glomerular filtration rate, suggesting that altered taste receptor gene expression could reflect impaired renal function. Thus, alterations in T1R3 and Scnn1 expression in diabetes correlated with renal function. Taste receptor gene expression dysregulation could indicate dysgeusia associated with impaired renal function in patients with diabetes

    Structural basis for the absence of low-energy chlorophylls in a photosystem I trimer from Gloeobacter violaceus

    Get PDF
    Photosystem I (PSI) is a multi-subunit pigment-protein complex that functions in light-harvesting and photochemical charge-separation reactions, followed by reduction of NADP to NADPH required for CO2 fixation in photosynthetic organisms. PSI from different photosynthetic organisms has a variety of chlorophylls (Chls), some of which are at lower-energy levels than its reaction center P700, a special pair of Chls, and are called low-energy Chls. However, the sites of low-energy Chls are still under debate. Here, we solved a 2.04-& ANGS; resolution structure of a PSI trimer by cryo-electron microscopy from a primordial cyanobacterium Gloeobacter violaceus PCC 7421, which has no low-energy Chls. The structure shows the absence of some subunits commonly found in other cyanobacteria, confirming the primordial nature of this cyanobacterium. Comparison with the known structures of PSI from other cyanobacteria and eukaryotic organisms reveals that one dimeric and one trimeric Chls are lacking in the Gloeobacter PSI. The dimeric and trimeric Chls are named Low1 and Low2, respectively. Low2 is missing in some cyanobacterial and eukaryotic PSIs, whereas Low1 is absent only in Gloeobacter. These findings provide insights into not only the identity of low-energy Chls in PSI, but also the evolutionary changes of low-energy Chls in oxyphototrophs

    Histochemical Characteristics of Tertiary Dentin Due to Calcium Hydroxide Paste in Rats

    Get PDF
    Calcium hydroxide is mainly used for dental pulp capping and it is thought that it induces hard tissue formation far better than other materials. Experimentally verifying this fact, Nishikawa et al revealed that bone-like dentin corresponding to tertiary dentin is rapidly formed when calcium hydroxide is applied directly to the pulp. Utilizing the same experimental system, histochemical study of the newly formed hard tissue (reparative dentin) was carried out and the results thereof were reported. Thick and irregular reparative dentin was formed in the pulp cavity and partial narrowing of the root canal was observed in m-CT. Histopathologically, the irregular reparative dentin increased its thickness obliterating the root canal having a diff erent Azan staining of aniline blue compared to primary dentin. Numerous cellular inclusion bodies were also trapped inside the thick dentin. Furthermore, with Schmorl’s thionine picric acid staining,thick reparative dentin was noted around the pulp cavity and dentin. The dentin was densely stained with picric acid with diff erent staining ability from the surrounding dentin. In addition, it was clearly confi rmed that many cells were trapped in reparative dentin. The results of the experiment suggest that the characteristics of the newly formed reparative dentin is comparable to tertiary dentin

    Low expression of γ-glutamyl hydrolase mRNA in primary colorectal cancer with the CpG island methylator phenotype

    Get PDF
    金沢大学がん研究所分子標的がん医療研究開発センターThe CpG island methylator phenotype (CIMP+) in colorectal cancer (CRC) is defined as concomitant and frequent hypermethylation of CpG islands within gene promoter regions. We previously demonstrated that CIMP+ was associated with elevated concentrations of folate intermediates in tumour tissues. In the present study, we investigated whether CIMP+ was associated with a specific mRNA expression pattern for folate- and nucleotide-metabolising enzymes. An exploratory study was conducted on 114 CRC samples from Australia. mRNA levels for 17 genes involved in folate and nucleotide metabolism were measured by real-time RT-PCR. CIMP+ was determined by real-time methylation-specific PCR and compared to mRNA expression. Candidate genes showing association with CIMP+ were further investigated in a replication cohort of 150 CRC samples from Japan. In the exploratory study, low expression of γ-glutamyl hydrolase (GGH) was strongly associated with CIMP+ and CIMP+-related clinicopathological and molecular features. Trends for inverse association between GGH expression and the concentration of folate intermediates were also observed. Analysis of the replication cohort confirmed that GGH expression was significantly lower in CIMP+ CRC. Promoter hypermethylation of GGH was observed in only 5.6% (1 out of 18) CIMP+ tumours and could not account for the low expression level of this gene. CIMP+ CRC is associated with low expression of GGH, suggesting involvement of the folate pathway in the development and/or progression of this phenotype. Further studies of folate metabolism in CIMP+ CRC may help to elucidate the aetiology of these tumours and to predict their response to anti-folates and 5-fluorouracil/leucovorin. © 2008 Cancer Research UK

    Different Requirement for Wnt/β-Catenin Signaling in Limb Regeneration of Larval and Adult Xenopus

    Get PDF
    BACKGROUND:In limb regeneration of amphibians, the early steps leading to blastema formation are critical for the success of regeneration, and the initiation of regeneration in an adult limb requires the presence of nerves. Xenopus laevis tadpoles can completely regenerate an amputated limb at the early limb bud stage, and the metamorphosed young adult also regenerates a limb by a nerve-dependent process that results in a spike-like structure. Blockage of Wnt/β-catenin signaling inhibits the initiation of tadpole limb regeneration, but it remains unclear whether limb regeneration in young adults also requires Wnt/β-catenin signaling. METHODOLOGY/PRINCIPAL FINDINGS:We expressed heat-shock-inducible (hs) Dkk1, a Wnt antagonist, in transgenic Xenopus to block Wnt/β-catenin signaling during forelimb regeneration in young adults. hsDkk1 did not inhibit limb regeneration in any of the young adult frogs, though it suppressed Wnt-dependent expression of genes (fgf-8 and cyclin D1). When nerve supply to the limbs was partially removed, however, hsDkk1 expression blocked limb regeneration in young adult frogs. Conversely, activation of Wnt/β-catenin signaling by a GSK-3 inhibitor rescued failure of limb-spike regeneration in young adult frogs after total removal of nerve supply. CONCLUSIONS/SIGNIFICANCE:In contrast to its essential role in tadpole limb regeneration, our results suggest that Wnt/β-catenin signaling is not absolutely essential for limb regeneration in young adults. The different requirement for Wnt/β-catenin signaling in tadpoles and young adults appears to be due to the projection of nerve axons into the limb field. Our observations suggest that nerve-derived signals and Wnt/β-catenin signaling have redundant roles in the initiation of limb regeneration. Our results demonstrate for the first time the different mechanisms of limb regeneration initiation in limb buds (tadpoles) and developed limbs (young adults) with reference to nerve-derived signals and Wnt/β-catenin signaling
    corecore