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Abstract Recent studies suggest that sphingosine 1-phosphate
(S1P) protects against atherosclerosis. We assessed the effects
of S1P on monocyte–endothelial interaction in the presence of
inflammatory mediators. Pretreatment of THP-1 cells with
S1P abolished Phorbol 12 myristate 13-acetate (PMA)-induced
THP-1 cell adhesion to human umbilical vein endothelial cells
(HUVECs). S1P inhibited PMA-induced activation of RhoA,
but not PKCs. S1P activated p190Rho GTPase activation pro-
tein (GAP) only in the presence of PMA, suggesting an inhibi-
tory effect of S1P and PMA to suppress RhoA. In conclusion,
S1P inhibited monocyte–endothelial interactions by inhibiting
RhoA activity which may explain its anti-atherogenic effects.
� 2007 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Sphingosine 1-phosphate (S1P), a bioactive lipid mediator,

has a variety of actions in several types of cells. In plasma, S1P

is mainly present in high-density lipoprotein (HDL) and low-

density lipoprotein (LDL), to a lesser extent [1]. Platelets also

contain high concentrations of S1P, and a fraction (20–40%)

of S1P is released into the circulation upon their activation [2].

Recent studies reported the cytoprotective actions of S1P on

vascular endothelial cells (ECs). S1P stimulates the prolifera-

tion [3,4], survival [1,5,6], and migration [3,7–9] of ECs. It also

induces nitric oxide (NO) synthesis in ECs [10]. Thus, S1P has

been proposed as an anti-atherogenic mediator.

Human peripheral monocytes express S1P receptors, the

members of G-protein-coupled receptors (GPCRs) [11,12].

However, the direct effects of S1P on peripheral monocytes

have not been fully elucidated. The adhesion of peripheral

monocytes to vascular endothelium importantly contributes

to atherogenesis [13]. The present study tested the effects of

S1P on monocyte–endothelial cell interactions in the presence

of inflammatory mediators, and the underlying mechanism(s)

for this process.
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2. Materials and methods

2.1. Cell cultures and reagents
THP-1 cell line (ATCC) was cultured in RPMI-1640 containing

10% FCS. Human umbilical vein endothelial cells (HUVECs) were
isolated from normal-term umbilical veins and cultured in 0.1% gela-
tin-coated tissue culture dishes, then plated on 22-mm fibronectin-
coated glass cover slips after 2 or 3 passages for use in a flow cham-
ber apparatus, as previously described [14]. S1P was obtained from
Sigma–Aldrich Japan. Go6976 and phorbol-12-myristate-13-acetate
(PMA) were obtained from Calbiochem. Rottlerin was obtained from
BIOMOL Research Laboratories. Pertussis toxin (PTX) was obtained
from List Biological Laboratories. Recombinant human IL-1b was
obtained from Genzyme. The antibodies used in the present study
were as follows: rabbit anti-protein kinase C (PKC)a and d poly-
clonal antibodies (Santa Cruz Biotechnology), rabbit anti-RhoA
polyclonal antibody (Upstate), mouse anti-hemagglutinin epitope
(HA) antibody (Boehringer Mannheim), rabbit anti-actin polyclonal
antibody (Sigma), mouse anti-p190RhoGAP antibody (Upstate),
anti-phosphotyrosine-RC20:HRPO(BD Bioscience) and HRP-conju-
gated goat anti-mouse IgG. To examine cell viability, THP-1 cells
were stained with a 0.25% trypan blue solution after incubation with
S1P or PMA.
2.2. Monocyte adhesion assays
The protocols of the adhesion assays under flow conditions have

been previously described in detail [15]. Briefly, HUVEC monolayers
were stimulated with 10 U/mL of IL-1b for 4 h on coverslips and then
positioned in a flow chamber mounted on an inverted microscope
(IX70, Olympus, Japan). The monolayers were perfused for 5 min
with perfusion medium, after which THP-1 cells (1 · 106/mL) were
drawn through the chamber with a syringe pump (PHD2000, Har-
vard Apparatus) for 10 min at a controlled flow rate to generate a
shear stress of 1.0 dyne/cm2. The entire period of perfusion was re-
corded on videotape, and then transferred to a personal computer
for image analysis to determine the number of rolling and adherent
THP-1 cells on HUVEC monolayers in 10 randomly selected 20·
microscope fields. In some experiments, THP-1 cells were preincu-
bated with appropriate concentrations of PKC inhibitors (Go6976,
2.6 lmol/L; Rottlerin, 5 lmol/L) prior to S1P or PMA treatment.
Though it is difficult to completely control variation of baseline adhe-
sive interaction of HUVEC prepared from donor to donor, we obtain
consistent response after IL-1b stimulation as we previously demon-
strated [15–17].
2.3. Translocation of PKC in THP-1 cells
To examine the translocation of and PKC from the cytosol to the

membrane, an indicator of activation, membrane and total cell lysates
of THP-1 cells (1 · 106/mL) were prepared as described previously [17].
2.4. RhoA pull-down assay
RhoA pull-down assay was performed using Rho activation Kit

(Upstate) following the manufacturer’s protocol [18].
blished by Elsevier B.V. All rights reserved.
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2.5. Overexpression of RhoA
Wild-type (pEF-BOS-HA-WT-RhoA) and dominant active (pEF-

BOS-HA-DA-RhoA) mutant forms of RhoA cDNA constructs were
kindly provided by Dr. Shinya Kuroda (University of Tokyo, Tokyo,
Japan), and transfected into THP-1 cells by lipofection as previously
described [15]. We previously observed that 40% of cells were transfec-
ted with plasmid cDNA by this method [19]. The transfected THP-1
cells were harvested 24 h after transfection and RhoA expression was
determined by Western blotting analysis with a monoclonal antibody
against the HA epitope.
2.6. Immunoprecipitations
Immunoprecipitations were performed as described previously [20]

and probed with monoclonal antibodies against p190RhoGAP or
phosphotyrosine (RC20). The relative amount of phosphorylated
p190RhoGAP was determined by measuring the amount of phosphor-
ylated p190RhoGAP immunoprecipitated relative to the total amount
of p190RhoGAP.
2.7. Monocyte isolation
Monocytes were freshly isolated from a buffy coat, obtained from

healthy volunteers, using a MACS monocyte isolation kit (Miltenyi
Biotec). Isolated monocytes were cultured in media containing 20%
human serum (The Interstate Companies), 10 ng/ml of M-CSF (Gen-
zyme Techne), 100 IU/ml penicillin, 100 lg/ml and streptomycin in
RPMI 1640 (Sigma).
2.8. Statistical analysis
Results are presented as the means ± S.E.M. Data were analyzed

using analysis of variance (ANOVA), with a value of P < 0.05 consid-
ered significant.
Fig. 1. S1P inhibits PMA-induced THP-1 cell adhesion to HUVECs.
(A) THP-1 cells (1 · 106/mL) were treated with 250 nM of PMA for
10 min and various concentrations of S1P for 18 h before incubation
with 250 nmol/L of PMA for 10 min. The cells were perfused over
activated (IL-1b 10 U/mL, 4 h) HUVEC monolayers at a flow rate of
1.0 dyne/cm2 as described in materials and methods. Adhered and
rolling cells were counted as described in materials and methods. Data
are representative of the results of three separate experiments.
#P < 0.001 vs. S1P (�)/PMA (�). *P < 0.05, **P < 0.01, ***P < 0.001
vs. S1P (�)/PMA (+). (B) THP-1 cells were treated with 250 ng/mL of
PMA for 10 min, or 5 lmol/L of S1P for indicated hours before
incubation with 250 ng/mL of PMA and a flow assay was performed as
described in A. Data are representative of the results of three separate
experiments. #P < 0.001 vs. S1P (�)/PMA (�). ***P < 0.001 vs. S1P
(�)/PMA (+). (C) Human monocytes (1 · 106/mL) were treated with
S1P or PMA and a flow assay was performed as described in A. Data
are representative of the results of three separate experiments.
3. Results

3.1. S1P inhibits PMA-induced THP-1 cell adhesion to

HUVECs

We assessed the effect of S1P on THP-1 cell adhesion in the

presence of PMA. PMA, a potential activator of PKC families,

induces inflammatory process in many types of cells. Indeed,

PMA alone remarkably enhanced THP-1 cell adhesion to acti-

vated HUVECs. THP-1 cells were preincubated with various

concentrations of S1P for 18 h before the addition of PMA.

PMA-induced THP-1 cell adhesion to HUVECs was signifi-

cantly decreased in a S1P concentration-dependent manner

and reached a plateau after 5 lmol/L S1P (Fig. 1A). With this

concentration, PMA-induced THP-1 cell adhesion was com-

pletely inhibited after 18 h of preincubation (Fig. 1B). Thus,

we chose to incubate THP-1 cells with 5 lmol/L S1P for 18

hours in the following experiments.

S1P also inhibited PMA-induced adhesion of human peri-

pheral blood monocytes to HUVECs (Fig. 1C). We then

examined whether S1P inhibits THP-1 cell adhesion induced

by SDF-1a, a chemokine that induces monocyte adhesion.

S1P also inhibited SDF-1a-induced THP-1 cell adhesion to

HUVECs (Fig. 2).

*P < 0.001 vs. S1P (�)/PMA (�). #P < 0.05 vs. S1P (�)/PMA (+).
3.2. PTX reverses S1P inhibition of THP-1 cell adhesion

THP-1 cells as well as human peripheral monocytes express

S1P receptors, the members of G-protein-coupled receptors

(GPCRs) [11]. We examined whether inhibitory effect of S1P

is mediated by S1P receptor. When THP-1 cells were pre-

treated with pertussis toxin (PTX), a specific Gi protein inhib-

itor, S1P failed to inhibit PMA-induced THP-1 cell adhesion

(Fig. 3).
3.3. Effects of S1P and PMA on PKC activation in THP-1 cells

The PKC family plays an important role in several

mechanisms that promote atherosclerosis [21], and increase

monocyte–endothelial interactions by activating RhoA and

modulating the expression and activation of integrins [17,22].

Thus, we examined whether S1P affect PKCa and PKCd activ-



Fig. 2. S1P inhibits SDF-1a- induced THP-1 cell adhesion to
HUVECs. THP-1 cells were treated with 100 ng/mL of SDF-1a for
10 min, or 5 lmol/L of S1P for 18 hours before incubation with 100 ng/
mL of SDF-1a and a flow assay was performed as described in Fig. 1A.
Data are representative of the results of three separate experiments.
*P < 0.001 vs. S1P (�)/SDF-1a (�). #P < 0.001 vs. S1P (�)/SDF-1a
(+).

Fig. 3. PTX reverses inhibition of THP-1 cell adhesion by S1P. THP-1
cells were incubated in the absence or presence of 100 ng/mL of
pertussis toxin (PTX) for 24 h, then incubated with PMA and a flow
assay was performed as described in Fig. 1A. Data are representative
of the results of three separate experiments. #P < 0.01 vs. S1P (�)/
PMA (+)/PTX (�).

Fig. 4. Effects of S1P and PMA on activation of PKCs in THP-1 cells.
(A) THP-1 cells were treated with S1P and PMA as described in
Fig. 1A. PKCa and d activation was detected in the membrane and
cytosol lysates of THP-1 cells (1 · 106/mL) under each condition by
Western blotting. Blots are representative of three separate experi-
ments. (B) THP-1 cells were incubated in the absence or presence of
5 lmol/L of rottlerin or 2.6 lmol/L of Go6976 for 30 min, then
incubated with S1P and PMA and a flow assay was performed as
described in Fig. 1A. Data are representative of the results of three
separate experiments. *P < 0.05 vs. Go6976 (�) or rottlerin (�).
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ity in the presence of PMA. PMA alone induced PKCa and d
activation in THP-1 cells. Contrary to the result of adhesion

assays, S1P further augmented PMA-induced PKC activation

(Fig. 4A). Go6976 (a PKCa inhibitor) or rottlerin (a PKCd
inhibitor) inhibited PMA-induced THP-1 cell adhesion. How-

ever, inhibitory effect of S1P on THP-1 cell adhesion was not

affected by Go6976 or rottlerin (Fig. 4B).

3.4. Effects of S1P and PMA on RhoA activation in THP-1 cells

We then examined the effect of S1P on RhoA activity in the

presence of PMA, PMA activated RhoA in THP-1 cells

(Fig. 5A), which was inhibited by Go6976 or rottlerin (data

not shown). S1P inhibited PMA-induced RhoA activation

(Fig. 5A). To investigate the potential role of RhoA in THP-

1 cell adhesion, THP-1 cells were transfected with cDNA

carrying wild-type (WT) or dominant active (DA) RhoA. We

confirmed the expression of exogenous RhoA in transfected

THP-1 cells (Fig. 5B). Compared to WT-RhoA transfected

THP-1 cells, DA-RhoA transfected THP-1 cells showed higher

adhesiveness to HUVECs, which was not affected by PMA or
S1P treatment (Fig. 5C). Taken together, these results indicate

that RhoA plays a dominant role in THP-1 cell adhesion. To

elucidate this mechanism, we measured the activity of GTPase

activation protein (GAP) that inactivates RhoA. PMA alone

did not affect tyrosine phosphorylation of p190RhoGAP.

Interestingly, in the presence of PMA, S1P induced tyrosine

phosphorylation of p190RhoGAP, suggesting its activation

(Fig. 5D). S1P alone did not affect p190RhoGAP activity (data

not shown). These results suggest that S1P, in conjunction with

PMA, activates p190RhoGAP, causing RhoA inactivation in

THP-1 cells.
4. Discussion

The present study demonstrated that S1P inhibited PMA-

induced THP-1 cell adhesion by inhibiting RhoA activity.



Fig. 5. Effects of S1P and PMA on activation of RhoA in THP-1 cells.
(A) THP-1 cells were incubated with S1P and PMA as described in
Fig. 1A, before being subjected to RhoA pull down assay. Blots are
representative of three separate experiments. (B) The expression levels
of transfected WT-RhoA and DA-RhoA in THP-1 cells were
evaluated by Western blotting with an anti-HA tag monoclonal
antibody (anti-HA) at 24 h after transfection. (C) THP-1 cells were
transfected with WT-RhoA and DA-RhoA, then treated as described
in B, after which flow assays with activated (IL-1b 10 U/mL, 4 h)
HUVECs were carried out. *P < 0.001 vs. S1P (�)/PMA (�),
#P < 0.01 vs. S1P (�)/PMA (+). (D) Phosphorylation of p190Rho-
GAP was determined by immunoprecipitation, analysis of immune
complexes by SDS–PAGE, and immunoblotting with anti-phospho-
tyrosine antibody. Blots are representative of three separate experi-
ments.
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S1P also inhibited SDF-1a-induced THP-1 cell adhesion.

These results suggest that S1P inhibits monocyte–endothelial

interaction under the conditions that cause inflammatory pro-

cesses, supporting its anti-atherogenic property.

It has been reported that S1P prevents monocyte–

endothelial interactions [23–25]. S1P prevents monocyte–endo-

thelial interactions through endothelial S1P1 or S1P3 receptor.

Although S1P receptors are also found on monocytes, the

effect of S1P on monocytes in not clear. We provide the first

evidence that S1P protects the vasculature against inflamma-

tory signal-induced monocyte–endothelial interactions. S1P’s

effects were inhibited by PTX, indicating that they are medi-

ated by S1P receptors in Gi-protein dependent manner [26].

Kimura et al. reported that PTX-sensitive S1P receptors are

responsible for inhibitory pathways for adhesion molecule

expression in ECs [24].
We previously showed that PKCa and PKCd play impor-

tant roles in adhesion of THP-1 cells by activating RhoA

[17]. PMA is one of the potential activators of PKC families

[27], and induces monocyte adhesion to ECs. However, prein-

cubation of THP-1 cells with S1P inhibited PMA-induced

THP-1 cell adhesion in spite that PKC was further activated.

This urged us to focus on the role of RhoA, downstream of

PKCs as a modulator of cell motility and cell adhesion.

RhoA is an important molecule involved in the regulation

of the actin cytoskeleton, integrins, and monocyte–endothelial

interaction [15]. Some papers reported that S1P activate Rho

GTPase in other cell types [28–30]. We observed that S1P

alone slightly activate RhoA activation in THP-1 cells (data

not shown). However, induction of THP-1 cell adhesion by

S1P is much smaller that induced by PMA. Experiments

using THP-1 cells transfected with DA RhoA showed that

RhoA could regulate cell adhesion. Indeed, S1P inhibited

PMA-induced RhoA activation, although PKCs were acti-

vated.

We also examined the possible involvement of other Rho

family proteins such as Rac1 and Cdc42. S1P attenuated

PMA-induced Cdc42 activation but not affect Rac1 activation

(data not shown), although S1P induces Rac1 activation in

endothelial cells [31,32]. These results suggest the distinct role

of Rho family proteins in regulation of cell adhesive interac-

tions in THP-1 cells.

The activities of the Rho family including RhoA are deter-

mined by the dynamic balance between the activated form

(GTP) and inactive form (GDP). Two distinct family of pro-

teins; Rho guanine nucleotide exchange factor (GEF) (GDP

to GTP) and RhoGAP (GTP to GDP) regulate these two

forms of RhoA [33]. We found that S1P activates p190Rho-

GAP in the presence of PMA. These results suggest that S1P

inactivates RhoA by activating p190RhoGAP. Mechanism

by which PMA and S1P activate p190RhoGAP remains un-

known. Recently, several phospholipids such as phosphatidic

acid (PA) [34] and phosphatidylserine (PS) [35] are reported

to increase GAP activity in synergism with PMA. Moreover,

co-incubation with PKC, diacylglycerol and phosphatidylser-

ine induced the phospholylation of p190RhoGAP in fibro-

blasts and the translocation of p190RhoGAP was completely

blocked by pretreatment of cells with PKC inhibitors [36].

These results suggest p190RhoGAP activation could be

influenced by PKCs. Our findings suggest that PKC activity

augmented by PMA and S1P not only directly affect Rho

GTPase but also induce p190RhoGAP activation. The precise

mechanism for RhoA regulation in synergism with PMA will

require further investigations.

The concentration of S1P is from 0.2 lM to 0.9 lM in plas-

ma and serum [37]. Previous studies have reported that high

concentrations of S1P (1–20 lmol/L) had atherogenic effects,

while anti-atherogenic effects have been shown at low concen-

trations [25,38]. However, our results showed that S1P has

inhibitory effects on monocyte–endothelial interaction at con-

centrations as high as 5 lmol/L. This is the first to show that

the high concentration of S1P exerts inhibitory effects depend-

ing on the underlying conditions.

In conclusion, S1P inhibited PMA-induced THP-1 adhesion

to ECs by inhibiting RhoA activity via p190RhoGAP. Athero-

genesis involves multiple inflammatory processes. Thus, under

atherosclerosis-prone conditions, S1P may exert an anti-ath-

erogenic effect by inhibiting monocyte adhesion to ECs.
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