14 research outputs found

    Additional file 1: Figure S1. of Early strong intrathecal inflammation in cerebellar type multiple system atrophy by cerebrospinal fluid cytokine/chemokine profiles: a case control study

    No full text
    A schematic drawing indicating measurement of each part of the hindbrain. 1. Vertical diameter of vermis. 2. Anteroposterior diameter of vermis. 3. Anteroposterior diameter of pontine base. 4. Anteroposterior diameter of medulla oblongata. Figure S2. Clustering of correlations between each CSF cytokine level in SCA patients using the same order of cytokines as in MSA-C. Color codes indicate R values of correlations calculated using Pearson’s correlation coefficient. * p < 0.05, ** p < 0.01. CSF: cerebrospinal fluid, SCA: spinocerebellar ataxia, MSA-C: multiple system atrophy cerebellar-type. Figure S3. Heatmap analysis of correlations between cytokine levels and disease duration in SCA patients. R values of Pearson’s correlation coefficient analysis are divided into quintiles, and p-values calculated using one-way ANOVA are indicated as a heatmap. There were no significant correlations between cytokines and disease duration in SCA patients. SCA: spinocerebellar ataxia. Figure S4. Heatmap analysis of correlations between cytokine levels and MRI measurement in SCA. R-values of Pearson’s correlation coefficient analysis are divided into quintiles, and p-values calculated using one-way ANOVA are indicated as a heatmap. Among the 27 cytokines studied, only PDGF, IL-12(p70), GM-CSF, and MIP-1α showed significant negative correlations with MRI measurements. GM-CSF: granulocyte-macrophage colony-stimulating factor, IL: interleukin, MIP: macrophage inflammatory protein, MRI: magnetic resonance imaging, PDGF: platelet-derived growth factor, SCA: spinocerebellar ataxia. Table S1. Detection rates of cytokines/chemokines and growth factors in cerebrospinal fluid. Table S2. Summary of dysregulated cerebrospinal fluid cytokines (PDF 188 kb

    A unique increase in prefrontal gray matter volume in hoarding disorder compared to obsessive-compulsive disorder

    No full text
    <div><p>Background</p><p>Hoarding disorder (HD) is a disease concept newly presented in DSM-5. As far as we know, no studies have examined the structural changes relevant to hoarding by applying the diagnostic criteria of HD in DSM-5. In the present study, we aimed to find abnormalities in gray matter (GM) structures of patients with HD.</p><p>Methods</p><p>Seventeen patients who met the DSM-5 criteria for HD, 17 obsessive-compulsive disorder (OCD) patients, and 17 healthy controls (HCs) participated in this study. All participants underwent MRI scanning of the brain by a 3.0-Tesla MRI scanner. In a voxel-based morphometric procedure, preprocessed GM structural images were used to compare the three groups. Thereafter we investigated the correlation between the clinical data (age of onset, symptomatic severity) and GM volume.</p><p>Results</p><p>The HD group showed a significantly increased GM volume compared to the OCD and healthy control groups (p<0.05) in both Brodmann area (BA)10 and BA11. There was no significant difference between OCD and healthy control groups. No significant correlation between the clinical data including age of onset, symptom severity score, and GM volume was observed in HD and OCD groups.</p><p>Conclusions</p><p>The results might help to explain the inconsistency of previous studies. As with OCD, HD is considered to have cognitive dysfunction as its basis. This result is convincing after considering the clinical features of HD and suggested that structural abnormalities in the prefrontal regions might relate to the pathophysiology of HD.</p></div

    The results of correlation analysis.

    No full text
    <p>No significant correlation between the DY-BOCS dimensional score (HD: hoarding score, OCD: contamination/washing score) and GM volume was observed in either the HD or OCD group.</p

    The results of ROI analysis.

    No full text
    <p>In the comparison of the three groups based on the gray matter volume obtained by ROI analysis, the HD group showed significantly increased GM volumes compared to the OCD group and the healthy control group (p<0.05) in both BA10 and BA11.</p

    The results of VBM analyses.

    No full text
    <p>In voxel-based analysis of variance (ANOVA), three groups (HD, OCD, and HCs) exhibited the presence of significant regional GM volume differences in the right prefrontal regions. The initial voxel threshold was set to 0.001 uncorrected. Clusters were considered as significant when falling below a cluster-corrected p (FWE) = 0.05. The cluster size was 1228 voxels, and the p value was 0.004. Peak coordinates (Montreal Neurological Institute) were x = 20, y = 64, z = -18.</p

    Amide Proton Transfer Imaging of Diffuse Gliomas: Effect of Saturation Pulse Length in Parallel Transmission-Based Technique

    No full text
    <div><p>In this study, we evaluated the dependence of saturation pulse length on APT imaging of diffuse gliomas using a parallel transmission-based technique. Twenty-two patients with diffuse gliomas (9 low-grade gliomas, LGGs, and 13 high-grade gliomas, HGGs) were included in the study. APT imaging was conducted at 3T with a 2-channel parallel transmission scheme using three different saturation pulse lengths (0.5 s, 1.0 s, 2.0 s). The 2D fast spin-echo sequence was used for imaging. Z-spectrum was obtained at 25 frequency offsets from -6 to +6 ppm (step 0.5 ppm). A point-by-point B0 correction was performed with a B0 map. Magnetization transfer ratio (MTR<sub>asym</sub>) and ΔMTR<sub>asym</sub> (contrast between tumor and normal white matter) at 3.5 ppm were compared among different saturation lengths. A significant increase in MTR<sub>asym</sub> (3.5 ppm) of HGG was found when the length of saturation pulse became longer (3.09 ± 0.54% at 0.5 s, 3.83 ± 0.67% at 1 s, 4.12 ± 0.97% at 2 s), but MTR<sub>asym</sub> (3.5 ppm) was not different among the saturation lengths in LGG. ΔMTR<sub>asym</sub> (3.5 ppm) increased with the length of saturation pulse in both LGG (0.48 ± 0.56% at 0.5 s, 1.28 ± 0.56% at 1 s, 1.88 ± 0.56% at 2 s and HGG (1.72 ± 0.54% at 0.5 s, 2.90 ± 0.49% at 1 s, 3.83 ± 0.88% at 2 s). In both LGG and HGG, APT-weighted contrast was enhanced with the use of longer saturation pulses.</p></div

    Amide Proton Transfer Imaging of Diffuse Gliomas: Effect of Saturation Pulse Length in Parallel Transmission-Based Technique - Fig 2

    No full text
    <p>MTR<sub>asym</sub> of tumor <b>(A)</b> and NAWM <b>(B)</b> and ΔMTR<sub>asym</sub> <b>(C)</b> in LGG. MTR<sub>asym</sub> (<b>A</b>) of tumor was decreased with the saturation length in lower frequency range (1–2 ppm), but equivalent at 3.5 ppm. MTR<sub>asym</sub> of NAWM (<b>B</b>) is decreased with the saturation length in the entire frequency range. ΔMTR<sub>asym</sub> (<b>C</b>) was increased with the saturation length at higher frequency offsets (>2 ppm).</p

    Amide Proton Transfer Imaging of Diffuse Gliomas: Effect of Saturation Pulse Length in Parallel Transmission-Based Technique - Fig 1

    No full text
    <p>Z-spectra of LGG <b>(A)</b>, HGG <b>(C)</b>, and corresponding NAWM <b>(B, D)</b>. Z-spectra of tumor was steeper than that of NAWM, presumably because of less MT effect in tumor compared with NAWM. Prolongation of saturation pulses results in larger MT effect and thus wider Z-spectra in both tumor and NAWM.</p
    corecore