12 research outputs found
Barriers to contraceptive uptake among women of reproductive age in a semi-urban community of Ekiti State, Southwest Nigeria
Background: Globally, unplanned pregnancy and sexually transmitted infections (STIs) persist as a significant threat to womenâs reproductive health. In Nigeria, despite huge resources committed to family planning programs by stakeholders, contraceptive use has been very low. This study aimed at unraveling the barriers to the use of modern contraceptives among women of reproductive age (15-49 years) in Ise-Ekiti community, Ekiti State, Southwest Nigeria.Methods: This study was a cross sectional study among women aged 15-49 years. A multi-stage sampling technique was used in the recruitment of respondents from the community. An interviewer-administered questionnaire was used to collect data. Data were analyzed using SPSS version 15.Results: Although contraceptive awareness among respondents was high 496(98.6%), only 254 of the 503 respondents were using modern contraceptive methods giving a Contraceptive Prevalence Rate (CPR) of 50.5%. Among those not using any form of contraceptives, some identifiable barriers to contraceptive use includes desire for more children, 62(39.5%), partner disapproval, 40(25.5%), and fear of side-effects, 23(14.6%). Factors associated with contraceptive uptake include marital status (p=0.028), educational level (p=0.041) and religion (p=0.043) with traditional worshippers having the least uptake.Conclusion: This study showed that awareness to modern forms of contraceptives does translate into use. The identified barriers to contraceptive uptake suggest the need to improve uptake of contraceptives through a community-based and culturally acceptable intervention as doing this will go a long way in addressing some of these barriers.Keywords: Contraceptives uptake, barriers, women of reproductive ag
Chapter 31 - Application of nanochitosan in tagging and nano-barcoding of aquatic and animal meats
Nanochitosans obtained from crustacean shells are biodegradable and biocompatible offering valuable functional, nutritional, and binding properties. Their low toxicity favors diverse industrial applications in various research models and can enable their use in the tagging of commercially sold aquatic and animal meat, easily contaminated by microbial sources during packaging, storage, and transportation. In this capacity, nanochitosans have been applied in fingerprinting for tracking and identifying the manufacturing and expiry dates of commercially sold meats and fish, as well as delivery of antioxidants and antimicrobials in these food products without affecting product consistency, composition, and organoleptic property. This chapter reviews current research on chitosan-based nanoparticles as barcodes and biosensors in tagging and monitoring aquatic and animal meats; and highlights methods of fish tagging and coding, and the benefits as well as the properties of materials used as biosensors in nano-barcoding of fish and meat
Nanochitosan derived from marine bacteria
Nanochitosans are polysaccharides produced by the alkalescent
deacetylation of chitin and comprise a series of 2-deoxy-2
(acetylamino) glucose linked by Ă-(1-4) glycosidic linkages. These are
naturally formed from the deacetylation of shellfish shells and the
exoskeleton of aquatic arthropods and crustaceans. Reports of
chitosan production from unicellular marine bacteria inhabiting the
sea, and possessing distinct animal- and plant-like characteristics
abound. This capacity to synthesize chitosan from chitin arises from
response to stress under extreme environmental conditions, as a
means of survival. Consequently, the microencapsulation of these
nanocarriers results in new and improved chitosan nanoparticles,
nanochitosan. This nontoxic bioactive material which can serve as an
antibacterial agent, gene delivery vector as well as carrier for protein
and drug release as compared with chitosan, is limited by its
nonspecific molecular weight and higher composition of deacetylated
chitin. This chapter highlights the biology and diversity of
nanochitosan-producing marine bacteria, including the factors
influencing their activities, survival, and distribution. More so, the
applications of marine bacterial nanochitosans in transfection and
gene delivery; wound healing and drug delivery; feed supplement
development and antimicrobial activity are discussed
Utilization of nanochitosan for enzyme immobilization of aquatic and animal-based food packages
Studies have identified the properties of enzymes, functionalized molecules, and compounds in food industry applications as edible coatings and encapsulations, that assure prolonged food quality and standards. These molecules present benefits of longer shelf-life by delayed deterioration and inhibition of the proliferation of spoilage and mycotoxigenic microorganisms. However, challenges of reduced nutrient levels, miniaturized size, and low chemical stability remain concerning. Chitosan polymers naturally formed from the deacetylation of shellfish shells and exoskeletons of aquatic arthropods and crustaceans offer improved benefits when functionalized into nanoparticles as nanochitosans. These polysaccharides produced by the alkalescent deacetylation of chitin, comprise a series of 2-deoxy-2 (acetylamino) glucose linked by Ă-(1-4) glycosidic linkages. This chapter considers the health impacts and
Nanochitosan derived from marine bacteria
Nanochitosans are polysaccharides produced by the alkalescent deacetylation of chitin and comprise
a series of 2âdeoxyâ2 (acetylamino) glucose linked by Ăâ(1â4) glycosidic linkages. These are naturally
formed from the deacetylation of shellfish shells and the exoskeleton of aquatic arthropods and
crustaceans. Reports of chitosan production from unicellular marine bacteria inhabiting the sea, and
possessing distinct animalâ and plantâlike characteristics abound. This capacity to synthesize chitosan
from chitin arises from response to stress under extreme environmental conditions, as a means of
survival. Consequently, the microencapsulation of these nanocarriers results in new and improved
chitosan nanoparticles, nanochitosan. This nontoxic bioactive material which can serve as an
antibacterial agent, gene delivery vector as well as carrier for protein and drug release as compared
with chitosan, is limited by its nonspecific molecular weight and higher composition of deacetylated
chitin. This chapter highlights the biology and diversity of nanochitosanâproducing marine bacteria,
including the factors influencing their activities, survival, and distribution. More so, the applications
of marine bacterial nanochitosans in transfection and gene delivery; wound healing and drug
delivery; feed supplement development and antimicrobial activity are discussed
Utilization of nanochitosan in the sterilization of ponds and water treatment for aquaculture
Water pollution constitutes the leading cause of infant mortality,
neonatal deformities, and shrinkage of manâs average life expectancy.
Pollutants come from point and nonpoint sources; and water pollution
arises from the discharge of wastewater containing undesirable
impurities used for domestic, agricultural, and industrial purposes.
More so, high nutrient and wastewater runoffs from fish production
systems contribute to the fouling and eutrophication of recipient water
bodies. Hence, aquaculture which is inextricably linked to the natural
environment is challenged by the dearth of appropriate water quantity
and quality, militating against fish, and fishery production.
Nanochitosans as polysaccharides produced by the alkalescent
deacetylation of chitin, comprise a series of 2-deoxy-2 (acetylamino)
glucose linked by Ă-(1-4) glycosidic linkages. They are naturally
formed from the deacetylation of shellfish shells and exoskeletons of
aquatic arthropods and crustaceans. The unique attributes of chitin
confer a wide range of biotechnological applications on the polymer,
observed in flocculation as a wastewater treatment and purification
route initiated by chitosan. This chapter highlights nanochitosan
properties of aquaculture relevance; and elucidates the purification
potentials of nanochitosan, compared to inorganic coagulants and
organic polymeric flocculants. Effects of chitosan on contaminants and
microorganisms, as well as applications in fish pathogens detection,
fish disease diagnosis, and control are discussed
Next Generation Nanochitosan Applications in Animal Husbandry, Aquaculture and Food Conservation
Studies have identified the properties of enzymes, functionalized
molecules, and compounds in food industry applications as edible
coatings and encapsulations, that assure prolonged food quality and
standards. These molecules present benefits of longer shelf-life by
delayed deterioration and inhibition of the proliferation of spoilage and
mycotoxigenic microorganisms. However, challenges of reduced
nutrient levels, miniaturized size, and low chemical stability remain
concerning. Chitosan polymers naturally formed from the
deacetylation of shellfish shells and exoskeletons of aquatic
arthropods and crustaceans offer improved benefits when
functionalized into nanoparticles as nanochitosans. These
polysaccharides produced by the alkalescent deacetylation of chitin,
comprise a series of 2-deoxy-2 (acetylamino) glucose linked by Ă-(1-
4) glycosidic linkages. This chapter considers the health impacts and
microbiological health hazards associated with animal feeds quality
and the enzyme immobilization potentials of nanochitosans in animalbased
food and feed packages. Thereafter, nanochitosan properties
and benefits are compared against traditional preservatives from
microbes and plants; with highlights on current challenges in the
application of nanochitosan for enzyme immobilization
Chapter 21 - Utilization of nanochitosan in the sterilization of ponds and water treatment for aquaculture
Water pollution constitutes the leading cause of infant mortality,
neonatal deformities, and shrinkage of manâs average life expectancy.
Pollutants come from point and nonpoint sources; and water pollution
arises from the discharge of wastewater containing undesirable
impurities used for domestic, agricultural, and industrial purposes.
More so, high nutrient and wastewater runoffs from fish production
systems contribute to the fouling and eutrophication of recipient water
bodies. Hence, aquaculture which is inextricably linked to the natural
environment is challenged by the dearth of appropriate water quantity
and quality, militating against fish, and fishery production.
Nanochitosans as polysaccharides produced by the alkalescent
deacetylation of chitin, comprise a series of 2-deoxy-2 (acetylamino)
glucose linked by Ă-(1-4) glycosidic linkages. They are naturally
formed from the deacetylation of shellfish shells and exoskeletons of
aquatic arthropods and crustaceans. The unique attributes of chitin
confer a wide range of biotechnological applications on the polymer,
observed in flocculation as a wastewater treatment and purification
route initiated by chitosan. This chapter highlights nanochitosan properties of aquaculture relevance; and elucidates the purification
potentials of nanochitosan, compared to inorganic coagulants and
organic polymeric flocculants. Effects of chitosan on contaminants and
microorganisms, as well as applications in fish pathogens detection,
fish disease diagnosis, and control are discussed