3 research outputs found

    Development of low dark current SiGe-detector arrays for visible-NIR imaging sensor

    No full text
    SiGe based focal plane arrays offer a low cost alternative for developing visible- near-infrared focal plane arrays that will cover the spectral band from 0.4 to 1.6 microns. The attractive features of SiGe based foal plane arrays take advantage of silicon based technology that promises small feature size, low dark current and compatibility with the low power silicon CMOS circuits for signal processing. This paper will discuss performance characteristics for the SiGe based VIS-NIR Sensors for a variety of defense and commercial applications using small unit cell size and compare performance with InGaAs, InSb, and HgCdTe IRFPA's. We will present results on the approach and device design for reducing the dark current in SiGe detector arrays. We will discuss electrical and optical properties of SiGe arrays at room temperature and as a function of temperature. We will also discuss future integration path for SiGe devices with Si-MEMS Bolometers. © 2010 Copyright SPIE - The International Society for Optical Engineering

    Characterization of sige-detector arrays for visible-NIR imaging sensor applications

    No full text
    SiGe based focal plane arrays offer a low cost alternative for developing visible- near-infrared focal plane arrays that will cover the spectral band from 0.4 to 1.6 microns. The attractive features of SiGe based foal plane arrays take advantage of silicon based technology that promises small feature size, low dark current and compatibility with the low power silicon CMOS circuits for signal processing. This paper discusses performance characteristics for the SiGe based VIS-NIR Sensors for a variety of defense and commercial applications using small unit cell size and compare performance with InGaAs, InSb, and HgCdTe IRFPA's. We present results on the approach and device design for reducing the dark current in SiGe detector arrays. The electrical and optical properties of SiGe arrays at room temperature are discussed. We also discuss future integration path for SiGe devices with Si-MEMS Bolometers

    Development of low dark current SiGe-detector arrays for visible-NIR imaging sensor

    No full text
    SiGe based Focal Plane Arrays offer a low cost alternative for developing visible- NIR focal plane arrays that will cover the spectral band from 0.4 to 1.6 microns. The attractive features of SiGe based IRFPA's will take advantage of Silicon based technology, that promises small feature size, low dark current and compatibility with the low power silicon CMOS circuits for signal processing. This paper discusses performance comparison for the SiGe based VIS-NIR Sensor with performance characteristics of InGaAs, InSb, and HgCdTe based IRFPA's. Various approaches including device designs are discussed for reducing the dark current in SiGe detector arrays; these include Superlattice, Quantum dot and Buried junction designs that have the potential of reducing the dark current by several orders of magnitude. The paper also discusses approaches to reduce the leakage current for small detector size and fabrication techniques. In addition several innovative approaches that have the potential of increasing the spectral response to 1.8 microns and beyond
    corecore