5 research outputs found

    Exploring <em>Musa paradisiaca</em> Peel Extract as a Green Corrosion Inhibitor for Mild Steel Using Factorial Design Method

    Get PDF
    The suitability ofMusa paradisiaca (banana) peel extract as a green corrosion inhibitor for mild steel in acidic medium (1 M HCl) was investigated using factorial method of the design of experiment. The effects of two independent variables (concentration of banana peel extract and temperature) on the corrosion inhibition efficiency were investigated. The physicochemical properties of the extract such as surface tension, viscosity, flash point, and specific gravity were determined using standardized methods provided by the American System of Testing Materials (D-971). The relationship between the independent variables and the inhibitor efficiency was modeled by gasometric and thermometric methods. The statistical analysis of the inhibition efficiency was carried out using the “Fit Regression Model” of Minitab® 17.0, while the fitness of the models was assessed by the coefficient of determination (R2) and the analysis of variance (ANOVA). From the results obtained, gasometric method achieved a maximum inhibition efficiency of 66.83%, with an R2 of 90.76%, whereas thermometric method gave a maximum inhibition efficiency of 65.70%, with an R2 of 95.56%. This study shows that banana peel extract has the capacity to prevent the corrosion of mild steel in acidic medium

    Simulation and Optimization of an Integrated Process Flow Sheet for Cement Production

    Get PDF
    In this study the process flow diagram for the cement production was simulated using Aspen HYSYS 8.8 software to achieve high energy optimization and optimum cement flow rate by varying the flow rate of calcium oxide and silica in the clinker feed. Central composite Design (C.C.D) of Response Surface Methodology was used to design the ten experiments for the simulation using Design Expert 10.0.3. Energy efficiency optimization is also carried out using Aspen Energy Analyser. The optimum cement flow rate is found from the contour plot and 3D surface plot to be 47.239 tonnes/day at CaO flow rate of 152.346 tonnes/day and the SiO2 flow rate of 56.8241 tonnes/day. The R2 value of 0.9356 determined from the statistical analysis shows a good significance of the model. The overall utilities in terms of energy are found to be optimised by 81.4% from 6.511 x 107 kcal/h actual value of 1.211 x 107 kcal/h with 297.4 tonnes/day the carbon emission savings

    Energy and Economic Comparison of Different Fuels in Cement Production

    Get PDF
    Cement clinkerisation is the major energy-consuming process in cement manufacturing due to the high-temperature requirement. In this paper, energy data including specific energy consumption, forms, and types of energy used at different units of cement manufacturing processes were analyzed and compared for effectiveness, availability, cost, environmental, and health impact. Data from three different cement industries in Nigeria labeled as A, B, and C were used for the analysis in this study. The results of this research work established that coal is the cheapest energy source but environmental issues exonerate it from being the choice energy source. LPFO and Natural gas give better production output while minimizing pollution and health issues. When benchmarked against each other, Factory B was found to be the most energy-efficient in terms of output and cost of production. Although coal is cheaper compared to fuel oil and supposed to contribute a share of fuel used in cement industries, the industries are moving towards the use of alternative and conventional fuels to reduce environmental pollution. It is therefore recommended that deliberate effort to achieve appreciable energy-efficient levels should be the priorities of the cement industries in Nigeria

    Between Middlemen and Interlopers: History, Diaspora, and Writing on the Lebanese of West Africa

    No full text
    corecore