12 research outputs found

    Overview of CAPICE-Childhood and Adolescence Psychopathology:unravelling the complex etiology by a large Interdisciplinary Collaboration in Europe-an EU Marie Skłodowska-Curie International Training Network

    Get PDF
    Abstract The Roadmap for Mental Health and Wellbeing Research in Europe (ROAMER) identified child and adolescent mental illness as a priority area for research. CAPICE (Childhood and Adolescence Psychopathology: unravelling the complex etiology by a large Interdisciplinary Collaboration in Europe) is a European Union (EU) funded training network aimed at investigating the causes of individual differences in common childhood and adolescent psychopathology, especially depression, anxiety, and attention deficit hyperactivity disorder. CAPICE brings together eight birth and childhood cohorts as well as other cohorts from the EArly Genetics and Life course Epidemiology (EAGLE) consortium, including twin cohorts, with unique longitudinal data on environmental exposures and mental health problems, and genetic data on participants. Here we describe the objectives, summarize the methodological approaches and initial results, and present the dissemination strategy of the CAPICE network. Besides identifying genetic and epigenetic variants associated with these phenotypes, analyses have been performed to shed light on the role of genetic factors and the interplay with the environment in influencing the persistence of symptoms across the lifespan. Data harmonization and building an advanced data catalogue are also part of the work plan. Findings will be disseminated to non-academic parties, in close collaboration with the Global Alliance of Mental Illness Advocacy Networks-Europe (GAMIAN-Europe)

    Ultra-rare and common genetic variant analysis converge to implicate negative selection and neuronal processes in the aetiology of schizophrenia

    No full text
    Both common and rare genetic variants (minor allele frequency >1% and <0.1% respectively) have been implicated in the aetiology of schizophrenia. In this study, we integrate single-cell gene expression data with publicly available Genome-Wide Association Study (GWAS) and exome sequenced data in order to investigate in parallel, the enrichment of common and (ultra-)rare variants related to schizophrenia in several functionally relevant gene-sets. Four types of gene-sets were constructed 1) protein-truncating variant (PTV)-intolerant (PI) genes 2) genes expressed in brain cell types and neurons ascertained from mouse and human brain tissue 3) genes defined by synaptic function and location and 4) intersection genes, i.e., PI genes that are expressed in the human and mouse brain cell gene-sets. We show that common as well as ultra-rare schizophrenia-associated variants are overrepresented in PI genes, in excitatory neurons from the prefrontal cortex and hippocampus, medium spiny neurons, and genes enriched for synaptic processes. We also observed stronger enrichment in the intersection genes. Our findings suggest that across the allele frequency spectrum, genes and genetic variants likely to be under stringent selection, and those expressed in particular brain cell types, are involved in the same biological pathways influencing the risk for schizophrenia

    A genetically informed prediction model for suicidal and aggressive behaviour in teens

    No full text
    Suicidal and aggressive behaviours cause significant personal and societal burden. As risk factors associated with these behaviours frequently overlap, combined approaches in predicting the behaviours may be useful in identifying those at risk for either. The current study aimed to create a model that predicted if individuals will exhibit suicidal behaviour, aggressive behaviour, both, or neither in late adolescence. A sample of 5,974 twins from the Child and Adolescent Twin Study in Sweden (CATSS) was broken down into a training (80%), tune (10%) and test (10%) set. The Netherlands Twin Register (NTR; N = 2702) was used for external validation. Our longitudinal data featured genetic, environmental, and psychosocial predictors derived from parental and self-report data. A stacked ensemble model was created which contained a gradient boosted machine, random forest, elastic net, and neural network. Model performance was transferable between CATSS and NTR (macro area under the receiver operating characteristic curve (AUC) [95% CI] AUCCATSS(test set) = 0.709 (0.671–0.747); AUCNTR = 0.685 (0.656–0.715), suggesting model generalisability across Northern Europe. The notable exception is suicidal behaviours in the NTR, which was no better than chance. The 25 highest scoring variable importance scores for the gradient boosted machines and random forest models included self-reported psychiatric symptoms in mid-adolescence, sex, and polygenic scores for psychiatric traits. The model’s performance is comparable to current prediction models that use clinical interviews and is not yet suitable for clinical use. Moreover, genetic variables may have a role to play in predictive models of adolescent psychopathology

    Multivariate analyses of molecular genetic associations between childhood psychopathology and adult mood disorders and related traits

    Get PDF
    Ubiquitous associations have been detected between different types of childhood psychopathology and polygenic risk scores based on adult psychiatric disorders and related adult outcomes, indicating that genetic factors partly explain the association between childhood psychopathology and adult outcomes. However, these analyses in general do not take into account the correlations between the adult trait and disorder polygenic risk scores. This study aimed to further clarify the influence of genetic factors on associations between childhood psychopathology and adult outcomes by accounting for these correlations. Using a multivariate multivariable regression, we analyzed associations of childhood attention-deficit/hyperactivity disorder (ADHD), internalizing, and social problems, with polygenic scores (PGS) of adult disorders and traits including major depression, bipolar disorder, subjective well-being, neuroticism, insomnia, educational attainment, and body mass index (BMI), derived for 20,539 children aged 8.5–10.5 years. After correcting for correlations between the adult phenotypes, major depression PGS were associated with all three childhood traits, that is, ADHD, internalizing, and social problems. In addition, BMI PGS were associated with ADHD symptoms and social problems, while neuroticism PGS were only associated with internalizing problems and educational attainment PGS were only associated with ADHD symptoms. PGS of bipolar disorder, subjective well-being, and insomnia were not associated with any childhood traits. Our findings suggest that associations between childhood psychopathology and adult traits like insomnia and subjective well-being may be primarily driven by genetic factors that influence adult major depression. Additionally, specific childhood phenotypes are genetically associated with educational attainment, BMI and neuroticism

    Genetic architecture of 11 major psychiatric disorders at biobehavioral, functional genomic and molecular genetic levels of analysis

    No full text
    We interrogate the joint genetic architecture of 11 major psychiatric disorders at biobehavioral, functional genomic and molecular genetic levels of analysis. We identify four broad factors (neurodevelopmental, compulsive, psychotic and internalizing) that underlie genetic correlations among the disorders and test whether these factors adequately explain their genetic correlations with biobehavioral traits. We introduce stratified genomic structural equation modeling, which we use to identify gene sets that disproportionately contribute to genetic risk sharing. This includes protein-truncating variant-intolerant genes expressed in excitatory and GABAergic brain cells that are enriched for genetic overlap across disorders with psychotic features. Multivariate association analyses detect 152 (20 new) independent loci that act on the individual factors and identify nine loci that act heterogeneously across disorders within a factor. Despite moderate-to-high genetic correlations across all 11 disorders, we find little utility of a single dimension of genetic risk across psychiatric disorders either at the level of biobehavioral correlates or at the level of individual variants
    corecore