140 research outputs found

    Mechanism of Microwave Assisted Hydrodistillation Studied Through Heat Analysis

    Get PDF
    In this study, the efficiency of heating mechanism of microwave assisted hydrodistillation (MAHD) in the extraction of cinnamon bark oil was investigated. The optimum conditions used to analyse the heating performance were 8:1 ratio of water to cinnamon bark powder and fixed 250 W of irradiation power. The increasing temperature in the cinnamon bark matrix was dependent on the solvent, physical, dielectric and heating properties of the cinnamon matrix. Due to the high dielectric properties of water it accelerated the process of extraction. However, after the cinnamon matrix reached the boiling point, the density of solvent decreased which led to decrease in the dielectric properties. Volume rate of heat generation and penetration depth of microwave was also evaluated. The rate of volume heat generation reduced when the exposure time increase which is related to the reducing dielectric properties of cinnamon matrix. The penetration depth was calculated to support the data of dielectric properties. This study therefore produced an in depth justification necessary to understand the heating mechanism of MAHD in extraction of cinnamon bark essential oil

    Impact Modified Oil Palm Empty Fruit Bunch Fiber/Poly(Lactic) Acid Composite

    Get PDF
    In this study, composites were fabricated from oil palm empty fruit bunch fiber and poly(lactic) acid by extrusionn followed by injection moulding. Surface of the fiber was pre-treated by ultrasound in an alkali medium and treatment efficiency was investigated by scanning electron microscopy (SEM) analysis and Fourier transforms infrared spectrometer (FTIR). Effect of fiber treatment on composite was characterized by tensile strength (TS), tensile modulus (TM) and impact strength (IS). Furthermore, biostrong impact modifier was incorporated into the treated fiber composite to improve its impact properties. Mechanical testing showed an improvement of up to 23.5% and 33.6% respectively for TS and TM of treated fiber composite above untreated fiber composite. On the other hand incorporation of impact modifier led to enhancement of about 20% above the initial IS of the treated fiber composite

    SYNTHETIC ANTIMICROBIAL AGENT AND ANTIMICROBIAL FABRICS: PROGRESS AND CHALLENGES

    Get PDF
    ABSTRACT: Recently, there is a strengthening requirement for antimicrobial fabrics that are resistant to pathogens, offer greater hygiene, and are protective in an active lifestyle. Synthetic compounds have been applied to impart antimicrobial properties to the fabrics.  In this paper, synthetic antimicrobial agents, namely quaternary ammonium compounds (QACs), polyhexamethylene biguanide (PHMB), triclosan, and N-halamine are discussed along with their mechanisms of action. Research has been done on synthetic antimicrobial treatment of fabrics; the tested microorganisms used to determine their efficiency and durability are summarized. It is also found that although synthetic antimicrobial agents have excellent strength to kill the microorganisms, some of these antimicrobial agents are harmful and have adverse effects on the environment, safety, and health. Identification of these problems will provide future challenges to overcome and improve the techniques used for antimicrobial treatment of the fabrics. Based on the infromation presented herein, it is recommended that subsequent studies should consider the use of antimicrobial agents that are either obtained from plant sources or from microorganisms. On the other hand, nanotechnlogy should be explored for production of antimicrobial agents in further studies based on its potential to facilitate the production of environmentally benign antimicrobial agents. ABSTRAK: Kebelakangan ini, permintaan terhadap fabrik antimikrobial bagi mencegah jangkitan patogen, penjagaan kebersihan dan perlindungan bagi gaya hidup yang aktif semakin meningkat. Sebatian sintetik telah diguna pakai bagi menambah sifat antimikrobial pada fabrik. Di dalam artikel ini, agen antimikrob sintetik yang dinamakan sebagai sebatian ammonium kuater (QAC), polyhexamethylene biguanide (PHMB), triclosan dan N-halamine serta mekanisma tindak balasnya telah dibincangkan. Penyelidikan telah dijalankan terhadap fabrik yang dirawat menggunakan agen antimikrob sintetik. Mikroorganisma yang digunakan bagi menentukan kecekapan dan daya tahan turut diringkaskan. Keputusan menunjukkan agen antimikrobial sintetik mempunyai tindak balas yang sangat baik untuk membunuh mikroorganisma, namun sebahagian agen antimikrobial ini berbahaya dan mempunyai kesan buruk terhadap alam sekitar, keselamatan dan kesihatan. Melalui kaedah kenal pasti masalah, ia dapat memberi solusi dan membaiki teknik rawatan antimikrobial pada fabrik pada masa hadapan. Hasil keputusan dan perbincangan menunjukkan kajian seterusnya harus menimbang penggunaan agen antimikrobial yang diperoleh dari sumber tumbuhan. Selain itu, nanoteknologi harus diterokai bagi pengeluaran agen antimikrobial berdasarkan potensinya yang mesra alam

    Oil palm Empty Fruit Bunch (EFB) fiber reinforced poly(lactic) acid composites : effects of fiber treatment and impact modifier

    Get PDF
    The use of natural fibers as reinforcement in polymer composites has become necessary based on the several advantages of lignocellulosic fibers over their inorganic counterparts. However, limitations to the use of natural fiber in composites are the inherent reduced adhesion between the fiber and matrix, high moisture absorption and UV degradation owing to non-cellulosic components of natural fibers. In this research, composites were fabricated from oil palm empty fruit bunch fiber (EFB) and poly lactic acid (PLA) with different loading percent of 10-40 wt%. Mechanical testing revealed that 30 wt% of fiber content produced the highest mechanical properties and this was selected as the optimum fiber content based on treated EFB fiber that were fabricated. To enhance the compatibility of EFB with PLA, the fiber surface was treated by ultrasound in both water and alkali medium and optimization was done by response surface methodology (RSM), which selected 100 mins exposure time at 90oC in 2 wt% NaOH as the optimum treatment condition. Fibers were further treated with poly(dimethysiloxane) coupling agent to increase bonding of EFB with PLA. Effects of fiber treatment were investigated through mechanical, structural, morphological and thermal analysis. Characteristic strength analysis of fibers was also done by Weibull characteristic model. Fabrication of composites was done by extrusion followed by pelletizing after which test samples were prepared using injection moulding machine, and composite characterization was carried out. Furthermore, biostrong impact modifier was incorporated into the composites up to 2 wt% to improve the impact properties and it was found to increase the IS of PLA by 38%, but also led to reduction in other mechanical properties of EFB/PLA composites. Morphological analysis of composites fractured surface by scanning electron microscopy (SEM) and functional groups analysis by Fourier transforms infrared spectroscopy (FTIR) revealed improved adhesion of treated fibers with PLA. Structural analysis by X-ray diffraction (XRD), supported results from differential scanning calorimetric (DSC) analysis which showed that composites prepared with the combination of ultrasound alkali and silane treated fibers has the highest crystallinity index (CrI% = 75.44%). Thermogrvimetric analysis (TGA) also showed that silane ultrasound and alkali treatment of EFB fibers increased the thermal stability of the composites by raising the peak decomposition temperature, with an increase of 43% in activation energy (Ea = 56.52 kJ/mol). Natural degradation analysis also confirmed the reduced effect of environmental factors on silane and ultrasound treated fiber based composites compared to untreated fiber based composites. Besides that, water uptake analysis and contact angle measurements revealed the increased hydrophobicity of composites after silane treatment of EFB fibers, with about 106o contact angle value and less than 5% water uptake after 150 days soaking period. The highest mechanical properties were obtained from composites based on combined ultrasound, alkali and silane treated fiber

    Effects of polymer and surfactant complex with microbubble on the flow enhancement of liquids in pipelines

    Get PDF
    The major challenges confronting pipeline transportation of fluids are cost of transportation and energy dissipation. Such challenges are caused by the fluid turbulent flow. There are several attempted approaches to reduce the cost as well as the energy dissipated which have initially proven abortive. The main reason for this been that, there is no universal approach to reduce such turbulence as well as cost of liquid transportation. This turbulence flow, which leads to drag in the pipeline, has initially been attempted to reduce with active, passive and interactive means. However, safest practices, environmental consideration and less cost have prompted a continuous research in this area. Microbubbles, due to the environmental friendly nature and economic feasibility have as well been investigated by several researchers. However, the problem of coalescence is a major drawback to its general acceptance. This present work presents an approach to investigate and evaluate the effects of polymers, surfactant alone, complexes formed from these additives, each of these additives and their complexes with microbubbles. Such is aimed at changing the flow behavior in the pipeline. In this present work, Xanthan gum (XG), Polyacryl amide (PAM), Polyethylene Oxide (PEO), Hexadecyltrimethyl ammonium chloride (HTAC), Sodium dodecyl sulfate (SDS) were used as drag reducing agents (DRAs). These were tested in the Rotating Disk Apparatus (RDA) and also in the pipe. Rotating Disk apparatus was conducted to simulate external flows as well as mimic the high turbulence in the pipe. The pipeline loop was used to individually study the materials, their complexes as well as the combination of either of these with microbubbles. Materials were prepared in 50, 100, 200, 500, 700 and 1 OOOppm as the concentration and data were taken for their pressure drop across the sections of the pipe at varying flow rates. Such were used to evaluate drag reduction capability of these DRAs. From the result, it was observed that concentration played important roles in each of the materials investigated both in the RDA and pipeline. For the RDA, the best performance was obtained for Xanthan gum at 700ppm and a total drag reduction of about 53% was recorded while 47% and 43% for PAM and PEO at lOOOppm respectively. For the HTAC and the SDS, only 39 and 32 percent were recorded for each at lOOOppm. In the pipe, best performances were observed with the three dimensional complexes with microbubbles. Microbubbles alone gave 12% drag reduction, while microbubbles with three dimensional complex of XG 700ppm-HTAC lOOOppm-SP has the best drag reduction performance overall of about 87% drag reduction. Other complexes with microbubbles, such as XG 700ppm-SDS lOOOppm-SP, PAM lOOOppm-HTAC lOOOppmSP, PEO lOOOppm-HTAC lOOOppm-SP, PAM lOOOppm-SDS lOOOppm-SP, PEO lOOOppm-SDS lOOOppm-SP only approximately 79%, 77%, 72%, 64% and 57% drag reduction respectively. However, when these complexes were investigated without microbubbles, they performed less as the following results were obtained: XG 700ppmHTAC lOOOppm-SP, XG 700ppm-SDS lOOOppm-SP, PAM lOOOppm-HTAC lOOOppmSP, PEO lOOOppm-HTAC lOOOppm-SP, PAM lOOOppm-SDS lOOOppm-SP, PEO lOOOppm-SDS lOOOppm-SP with 73, 62, 59, 58, 54, 51 drag reduction percentage respectively. From the observation for the pipe, it could be suggested that, the microbubbles played important role on the complexes compared to those obtained from without micro bubbles or the RDA

    Introducing a new trio effects portable water treatment plant for rural areas

    Get PDF
    Water is Life, the quantity, usage, consumption and the importance of water in our daily activities, domestic purposes and industrial cannot be overemphasized, thus water remains an important aspect of the Human existence as we cannot do without water. The treatment and removal of MTBE (Methyl Tert-Butyl Ether) in water especially from petrochemical waste water is of immense importance and had been a challenging one because most of the available techniques in its removal can only remove part and not the whole, it is on this note that the treatment measure here shall be adopting a Trio effect to remove this contaminant from a sample of contaminated water. Treatment of Methyl Tert-Butyl Ether (MTBE) from wastewater supplies presents specific challenges due to the physicochemical properties of MTBE which depend strongly on its hydrophilic nature, and translate into a high solubility in water. MTBE has very low Henry’s constant and very low affinity for common adsorbents. An investigation was carried out for the treatability of methyl tert-butyl ether (MTBE) in synthetic wastewater. In this research, experimental rig and bench-scale studies using granular activated carbon (GAC) and hydrogen peroxide (H2O2) were conducted to observe the treatability of MTBE in synthetic wastewater. An experimental rig was built up that consist of three conjugated system. Subsequently, MTBE was amended to the H2O2 and air flow, followed by adsorption treatment with GAC. Generally, the major finding suggests that the longer cycle pulsation time (3 minutes open valve + 5 seconds closed valve) with air flow rate at 6 L/min over the synthetic wastewater caused a greater removal of MTBE. The result of this study can help to provide specific guidance into process parameter selection for treating MTBE in wastewaters. The optimum operating conditions are very important for treating the wastewater effectively in a larger scale. Moreover, this project shall be looking also into the commercialization of this plant to the market, thus markets surveys, researches and other techniques are also be carried out to introduce the plant to the market

    Synthesis of Hydroxyapatite through Ultrasound and Calcination Techniques

    Get PDF
    There is a growing demand for hydroxyapatite (HA) especially in medical applications, production of HA which is totally green is however a challenge. In this research, HA was produced from biowaste through ultrasound followed by calcination techniques. Pre-treatment of the biowaste was effectively achieved through the help of ultrasound. After calcination at 950°C, the obtained HA was characterized through Thermogravimetric (TGA) analysis, X-ray diffraction analysis (XRD) and Fourier transform infrared spectroscopy (FTIR). Spectrum of the produced HA was compared with standard HA index. The spectrum is in agreement with the standard HA as confirmed through FTIR, XRD and TGA result. Furthermore, morphological study of the HA through Field emission scanning electron microscope (FESEM) shows almost uniform spherical shape for the HA as expected. Based on the results obtained herein, combining ultrasound with calcination can help to produce pure HA with potential medical applications without the use of any organic solvent

    Drag Reduction Efficacy of CTABr and Nanosilica Particles Using Rotating Disk Apparatus (RDA)

    Get PDF
    Over the years, it has been proven an energy consuming and cost effective to transport fluid in pipe, efforts that have been made to investigate this have not yielded a consensus on the mechanism and principles behind such, polymers that have been used degrade and less effective over time, surfactant which are self repair are not as effective as the polymer, recent studies on this concept with other solid particles have majorly been concentrated in pipe, this work investigated the drag reduction efficacy of silica nanoparticle with cationic surfactant, CTABr in a rotating disk apparatus, it was observed that, these material can reduce drag by 50% and are mechanically stable after degradation. Before drag could be reduced with these materials, proper proportions on the materials should be selected

    Investigating the Drag Reduction Performance of Rigid Polymer-Carbon Nanotubes Complexes

    Get PDF
    Transporting liquids in commercial Pipeline is very expensive due to cost incurred in the installation of pumping stations. This cost can be reduced by polymeric additives. However, these polymeric additives degrade over time as a result of mechanical stress the fluids are subjected to. Previous efforts to address these problems have not been successful. It is thus inevitable to find alternative means of reducing the frictional drag in fluid flow. In this present work, the experimental study of rigid polymer, Carbon Nanotubes (CNT) Nanofluids and the complex mixtures for drag reduction in a rotating disk apparatus. The finding shows that, about 50% drag reduction was achieved; a comparative study was made on the drag reduction of both complex and nanofluids, where both were able to reduce drag, however at different concentrations. It could thus be concluded that combination of xanthan gum and Carbon nanotubes could reduce drag at a particular concentration

    The Potential of Microwave Assisted Hydrodistillation in Extraction of Essential Oil from Cinnamomum Cassia (cinnamon)

    Get PDF
    In this research, Microwave Assisted Hydrodistillation (MAHD) was used to extract essential oil from Cinnamomum Cassia (cinnamon). The effect of different parameters, such as water to raw material ratio (6:1, 8:1 & 10:1), microwave power (200 W, 225 W & 250 W) and extraction time (30 min, 60 min, 90 min, 120 min & 150 min) on the extraction yield and its major constituents were investigated. The essential oil was analysed by gas chromatography/ mass spectrometric (GC-MS) to evaluate the effect of extraction method on the content of its main constituent which was trans-Cinnamaldehyde. The optimum condition was found at water to raw material ratio of 8:1, microwave power of 250 W and extraction time of 90 min and the yield obtained under this condition was about 2.55%. The result obtained from GC-MS analysis revealed that the use of microwave irradiation did not adversely influence the composition of the essential oil. The main constituents found through MAHD was more desirable in terms of quality and quantity when compared to the conventional methods. The results obtained herein suggest that MAHD method could serve as a suitable and effective method for the extraction of essential oil from Cinnamomum Cassia (cinnamon)
    corecore