235 research outputs found

    Arrestin1 Mediates Light-Dependent Rhodopsin Endocytosis and Cell Survival

    Get PDF
    SummaryBackground: Arrestins are pivotal, multifunctional organizers of cell responses to GPCR stimulation, including cell survival and cell death. In Drosophila norpA and rdgC mutants, endocytosis of abnormally stable complexes of rhodopsin (Rh1) and fly photoreceptor Arrestin2 (Arr2) triggers cell death, implicating Rh1/Arr2-bearing endosomes in pro-cell death signaling, potentially via arrestin-mediated GPCR activation of effector kinase pathways. In order to further investigate arrestin function in photoreceptor physiology and survival, we studied Arr2’s partner photoreceptor arrestin, Arr1, in developing and adult Drosophila compound eyes.Results: We report that Arr1, but not Arr2, is essential for normal, light-induced rhodopsin endocytosis. Also distinct from Arr2, Arr1 is essential for light-independent photoreceptor survival. Photoreceptor cell death caused by loss of Arr1 is strongly suppressed by coordinate loss of Arr2. We further find that Rh1 C-terminal phosphorylation is essential for light-induced endocytosis and also for translocation of Arr1, but not Arr2, from dark-adapted photoreceptor cytoplasm to photosensory membrane rhabdomeres. In contrast to a previous report, we do not find a requirement for photoreceptor myosin kinase NINAC in Arr1 or Arr2 translocation.Conclusions: The two Drosophila photoreceptor arrestins mediate distinct and essential cell pathways downstream of rhodopsin activation. We propose that Arr1 mediates an endocytotic cell-survival activity, scavenging phosphorylated rhodopsin and thereby countering toxic Arr2/Rh1 accumulation; elimination of toxic Arr2/Rh1 in double mutants could thus rescue arr1 mutant photoreceptor degeneration

    The roles of Syx5 in Golgi morphology and Rhodopsin transport in Drosophila photoreceptors

    Get PDF
    SNAREs (SNAP receptors) are the key components of protein complexes that drive membrane fusion. Here, we report the function of a SNARE, Syntaxin 5 (Syx5), in the development of photoreceptors in Drosophila. In wild-type photoreceptors, Syx5 localizes to cis-Golgi, along with cis-Golgi markers: Rab1 and GM130. We observed that Syx5-deficient photoreceptors show notable accumulation of these cis-Golgi markers accompanying drastic accumulation of vesicles between endoplasmic reticulum (ER) and Golgi cisternae. Extensive analysis of Rh1 (rhodopsin 1) trafficking revealed that in Syx5-deficient photoreceptors, Rh1 is exported from the ER with normal kinetics, retained in the cis-Golgi region along with GM130 for a prolonged period, and then subsequently degraded presumably by endoplasmic reticulum-associated protein degradation (ERAD) after retrieval to the ER. Unlike our previous report of Rab6-deficient photoreceptors – where two apical transport pathways are specifically inhibited – vesicle transport pathways to all plasma membrane domains are inhibited in Syx5-deficient photoreceptors, implying that Rab6 and Syx5 are acting in different steps of intra-Golgi transport. These results indicate that Syx5 is crucial for membrane protein transport, presumably during ER-derived vesicle fusion to form cis-Golgi cisternae

    Deficiency of Prdm13, a dorsomedial hypothalamus-enriched gene, mimics age-associated changes in sleep quality and adiposity

    Get PDF
    The dorsomedial hypothalamus (DMH) controls a number of essential physiological responses. We have demonstrated that the DMH plays an important role in the regulation of mammalian aging and longevity. To further dissect the molecular basis of the DMH function, we conducted microarray-based gene expression profiling with total RNA from laser-microdissected hypothalamic nuclei and tried to find the genes highly and selectively expressed in the DMH. We found neuropeptide VF precursor (Npvf),PR domain containing 13 (Prdm13), and SK1 family transcriptional corepressor (Skor1) as DMH-enriched genes. Particularly, Prdm13, a member of the Prdm family of transcription regulators, was specifically expressed in the compact region of the DMH (DMC), where Nk2 homeobox 1 (Nkx2-1) is predominantly expressed. The expression of Prdm13 in the hypothalamus increased under diet restriction, whereas it decreased during aging. Prdm13 expression also showed diurnal oscillation and was significantly upregulated in the DMH of long-lived BRASTO mice. The transcriptional activity of the Prdm13 promoter was upregulated by Nkx2-1, and knockdown of Nkx2-1 suppressed Prdm13 expression in primary hypothalamic neurons. Interestingly, DMH-specific Prdm13-knockdown mice showed significantly reduced wake time during the dark period and decreased sleep quality, which was defined by the quantity of electroencephalogram delta activity during NREM sleep. DMH-specific Prdm13-knockdown mice also exhibited progressive increases in body weight and adiposity. Our findings indicate that Prdm13/Nkx2-1-mediated signaling in the DMC declines with advanced age, leading to decreased sleep quality and increased adiposity, which mimic age-associated pathophysiology, and provides a potential link to DMH-mediated aging and longevity control in mammals

    Myosin V, Rab11, and dRip11 direct apical secretion and cellular morphogenesis in developing Drosophila photoreceptors

    Get PDF
    Sensory neuron terminal differentiation tasks apical secretory transport with delivery of abundant biosynthetic traffic to the growing sensory membrane. We recently showed Drosophila Rab11 is essential for rhodopsin transport in developing photoreceptors and asked here if myosin V and the Drosophila Rab11 interacting protein, dRip11, also participate in secretory transport. Reduction of either protein impaired rhodopsin transport, stunting rhabdomere growth and promoting accumulation of cytoplasmic rhodopsin. MyoV-reduced photoreceptors also developed ectopic rhabdomeres inappropriately located in basolateral membrane, indicating a role for MyoV in photoreceptor polarity. Binary yeast two hybrids and in vitro protein–protein interaction predict a ternary complex assembled by independent dRip11 and MyoV binding to Rab11. We propose this complex delivers morphogenic secretory traffic along polarized actin filaments of the subcortical terminal web to the exocytic plasma membrane target, the rhabdomere base. A protein trio conserved across eukaryotes thus mediates normal, in vivo sensory neuron morphogenesis

    Short-Term Variability of PKS1510-089

    Get PDF
    We searched a short-term radio variability in an active galactic nucleus PKS 1510-089. A daily flux monitoring for 143 days at 8.4 GHz was performed, and VLBI observations at 8.4, 22, and 43 GHz were carried out 4 times during the flux monitoring period. As a result, variability with time scale of 20 to 30 days was detected. The variation patterns were well alike on three frequencies, moreover those at 22 and 43 GHz were synchronized. These properties support that this short-term variability is an intrinsic one. The Doppler factor estimated from the variability time scale is 47. Since the Doppler factor is not extraordinary large for AGN, such intrinsic variability with time scale less than 30 days would exist in other AGNs.Comment: 14 pages, 4 figure

    Hypothalamic orexin and mechanistic target of rapamycin activation mediate sleep dysfunction in a mouse model of tuberous sclerosis complex

    Get PDF
    Tuberous sclerosis complex (TSC) is a genetic disease related to hyperactivation of the mechanistic target of rapamycin (mTOR) pathway and manifested by neurological symptoms, such as epilepsy and sleep disorders. The pathophysiology of sleep dysfunction is poorly understood and is likely multifactorial, but may involve intrinsic biological regulators in the brain. Here, we characterized a mouse model of sleep disorders in TSC and investigated mechanisms of sleep dysfunction in this conditional knockout model involving inactivation of the Tsc1 gene in neurons and astrocytes (Tsc

    Contents of the Curriculum for Teaching English at the High-School Department of Deaf Schools in Japan: Current Situation Regarding Teaching English under the Japanese Ministry’s Curriculum Guideline

    Get PDF
    平成25(2013)年度より,特別支援学校(聴覚障害)高等部に現行学習指導要領が学年進行で施行された。その際,それまでの教科内容が大きく変わったのが外国語(以下,英語科)であった。他方で,近年のグローバル化を踏まえて,中央教育審議会は,平成34年度からの新たな教育課程の施行に向けて,「審議のまとめ」(2016)の中で,高等学校英語科の新たな科目案を示した。しかし,聴覚障害教育においては,「聞く」,「話す」ことに困難のある生徒に対する英語科指導の教育的手立てについて,これまでも課題が指摘されてきている。他方で,「読む」,「書く」ことについても,基礎となる日本語習得の手立てを考慮しながら進めていく必要があることや,生徒の状態の多様化を踏まえた指導方法の工夫などの対応も求められている。本稿では,現行学習指導要領が施行された初年度において全国の特別支援学校(聴覚障害)高等部において開設された英語科に関して行った調査の概要を報告するととに,そこから得られた結果を踏まえて,次期学習指導要領に向けて何が求められるのかについて検討した。From 2013, the current national curriculum guideline for special needs school began to apply to deaf schools’ high school departments and lasted three years. In that new guideline, the subjects of English were changed thoroughly. In 2016, the Central Council for Education in Japan officially announced the policy report for the next national curriculum guideline starting from 2022. In this report, and in accordance with globalization, an idea for new English subjects in high-school education is provided. However, in the education for the deaf, many tasks were indicated in the instruction process of teaching English as a foreign language because students have difficulty in listening and speaking. Moreover, in reading and writing activities, it is also necessary for the teachers to consider the procedure for students to acquire basic Japanese skills, with particular attention given in accordance with the variety of deaf student’s levels. In this paper, the authors summarize the results of the survey of the Japanese deaf schools given in the first year of the current national curriculum guideline. The authors also proposed some tasks and discussed possible ways for deaf students to acquire English competency with a view toward the contents of the next new national curriculum.本稿は,平成26年度広島大学大学院教育学研究科博士課程前期特別支援教育学専攻の課題研究報告書の内容の一部に基づき作成されたものである

    Ycf12 is a core subunit in the photosystem II complex

    Get PDF
    AbstractThe latest crystallographic model of the cyanobacterial photosystem II (PS II) core complex added one transmembrane low molecular weight (LMW) component to the previous model, suggesting the presence of an unknown transmembrane LMW component in PS II. We have investigated the polypeptide composition in highly purified intact PS II core complexes from Thermosynechococcus elongatus, the species which yielded the PS II crystallographic models described above, to identify the unknown component. Using an electrophoresis system specialized for separation of LMW hydrophobic proteins, a novel protein of ∼5 kDa was identified as a PS II component. Its N-terminal amino acid sequence was identical to that of Ycf12. The corresponding gene is known as one of the ycf (hypothetical chloroplast reading frame) genes, ycf12, and is widely conserved in chloroplast and cyanobacterial genomes. Nonetheless, the localization and function of the gene product have never been assigned. Our finding shows, for the first time, that ycf12 is actually expressed as a component of the PS II complex in the cell, revealing that a previously unidentified transmembrane protein exists in the PS II core complex

    piRNA-like small RNAs are responsible for the maternal-specific knockdown in the ascidian Ciona intestinalis Type A

    Get PDF
    The mRNAs stored in eggs are crucial for embryogenesis. To address functions of maternal mRNAs, we recently reported the novel method MASK (maternal mRNA-specific knockdown), which we used to specifically knockdown maternal transcripts in the ascidian Ciona intestinalis Type A. In MASK, the cis element of a maternal gene is fused with eGFP or Kaede reporter gene, and the cassette is introduced into Ciona genome by transposon-mediated transgenesis. In eggs of the transgenic lines, the maternal expression of the gene whose cis element is used for driving the reporter gene is suppressed. The zygotic expression of the gene is not suppressed, suggesting that the MASK method can distinguish between maternal and zygotic functions of a gene. Here we investigated the cis and trans factors responsible for MASK results. In the ovaries in which knockdown of a maternal gene occurs, a number of antisense small RNAs are expressed that are complementary to the sequence of the knocked-down genes. We suspect that these antisense small RNAs are the factor responsible for MASK results. The antisense small RNAs have several features that are seen in PIWI-interacting RNAs (piRNAs), suggesting that MASK is likely to use a piRNA-mediated mechanism to knock down maternal mRNAs
    corecore